Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine carbon sinking rates confirm importance of polar oceans

26.07.2016

About the same amount of atmospheric carbon that goes into creating plants on land goes into the bodies of tiny marine plants known as plankton. When these plants die and sink, bacteria feed on their sinking corpses and return their carbon to the seawater. When plankton sink deep enough before being eaten, this carbon is taken out of circulation as a greenhouse gas to remain trapped in the deep ocean for centuries.


Results show that the transfer efficiency of organic carbon from the surface to the deep ocean ranges from just 5 percent in the subtropics to around 25 percent near the poles.

Credit: Thomas Weber/University of Washington

How much of this happens in different regions of the ocean would seem like an academic question, except during an era when humanity is spewing carbon dioxide into the air at record-high levels and wondering where all that carbon will go in the future.

A University of Washington study published this week (July 25) in the Proceedings of the National Academy of Sciences uses a new approach to get a global picture of the fate of marine carbon. It finds that the polar seas export organic carbon to the deep sea, where it can no longer trap heat from the sun, about five times as efficiently as in other parts of the ocean.

"The high latitudes are much more efficient at transferring carbon into the deep ocean," said first author Thomas Weber, who did the work as a postdoctoral researcher at the UW and is now an assistant professor at the University of Rochester in New York. "Understanding how this happens will certainly allow a more complete prediction of ocean responses to climate change."

The planet has many carbon sinks, or routes that transfer heat-trapping carbon from the atmosphere into other parts of the Earth system. This sink is a literal one. Carbon-rich plankton detritus clumps together to form marine snow that drifts down through the water and provides food for deeper-dwelling organisms. The continual supply of organic carbon in particles from the surface to the deep sea is known as the "biological pump."

This pump had been thought to operate at similar strength throughout the oceans, but the new study finds a strong regional pattern. The authors find that about 25 percent of organic particles sinking from the surface in the polar oceans reach at least 1 kilometer (0.6 miles) -- the depth required for long-term storage in deep waters or the seafloor. Just 5 percent of sinking carbon in the subtropics makes it that far, while the rest is released into shallower water where it can soon rejoin the atmosphere. The tropics have an intermediate value of about 15 percent.

"This highlights the importance of the polar ocean -- the cold, high-latitude parts of the ocean -- for their ability to store carbon over long time periods," said co-author Curtis Deutsch, a UW associate professor of oceanography.

The growth of marine plants at the ocean's sunlit surface is well-studied, but what happens a mile down is more mysterious. For many years, scientists have put floating sediment traps at different depths to try to learn how deep the particles reach, but the results have been inconclusive. "It's obviously quite expensive to deploy these traps on a scale that you would need to make global estimates," Weber said. The new study takes a different approach. Researchers looked at phosphate, a nutrient taken in by plankton in the surface and released with carbon when particles decompose. They then used a computer model of ocean currents to determine the depth at which this nutrient is released.

"By looking at the products of the decomposition we could look at it in the opposite way but come to the same information, which is how deep stuff gets before it decomposes," Deutsch said.

They found that, overall, about 15 percent of the carbon in ocean plankton makes it to long-term storage in the deep ocean, which agrees with previous estimates. But the regional pattern came as a surprise.

The authors tried to understand why. Temperature could be a factor, since cold water, like refrigerators, will slow decomposition on the way down. But the temperature difference could not fully explain the results.

What did explain a range of observations was the size of the organisms that form marine snow. Warm, nutrient-poor subtropical seas are so-called "marine deserts" where the life that survives is made up of tiny picoplankton. Nutrient-rich polar oceans, and to a lesser degree the equator, can support larger lifeforms, such as diatoms, that sink more like a proverbial stone.

"Simply because they sink faster, these large phytoplankton are more likely to reach the deep ocean before being consumed," Weber said.

Under climate change, oceans are predicted to support fewer plankton overall. What's more, it's thought that water temperatures will rise, currents will slow and the tropics will expand.

"Even though this study is not directly about climate change, it provides us with a new way of thinking to apply to climate-change scenarios," Weber said. "As those regions dominated by smaller plankton tend to expand, it's likely that the ocean will become less efficient at locking carbon away from the atmosphere."

###

The research was funded by the Gordon and Betty Moore Foundation. Other co-authors are UW oceanography postdoctoral researcher Jacob Cram and graduate student Shirley Leung, and Timothy DeVries at the University of California, Santa Barbara.

For more information, contact Weber at t.weber@rochester.edu or 585-275-2103 and Deutsch at cdeutsch@uw.edu or 206-543-5189.

Media Contact

Hannah Hickey
hickeyh@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>