Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Arctic Sea Ice Cover in the Summer of 2008

24.09.2008
Climate Scientists' Forecast Confirmed

The Arctic summer nears its end and the minimum extent of sea ice is reached. The Arctic ice cover amounted to 4.5 million square kilometres on September 12th.

This is slightly more than the lowest ice cover ever measured: 4.1 million square kilometres in the year 2007. Scientists are anxious about the development of sea ice because the long-time mean is 2.2 million square kilometres higher.

This development did not come about completely unexpectedly, however. A model calculation conducted at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association in early summer showed that the ice minimum of the year 2008 would lie below that of the year 2005 with almost one hundred per cent probability. A new minimum below that of the year 2008, however, was expected with a probability of just eight per cent.

"If we regard the sea ice cover from the beginning of satellite observations in the year 1979, the measurement of 2008 comes as a little surprise, because summers with a low ice cover like 2007 are usually followed by winters with a heavy ice production," explains Prof. Rüdiger Gerdes, physical oceanographer at the Alfred Wegener Institute. From 1979 to 2004, about 6 to 7.5 million square kilometres of the Arctic were usually covered with ice. Now it is the second year in a row with less than 4.5 million square kilometres. However, the following summers still have to show if this trend is to continue.

"A hitherto unanswered question is whether the sequence of two extreme years presents a transition towards a new regime of Arctic sea ice, which makes the return to former states of sea ice cover difficult," continues Gerdes. Transitions of this kind show up in coupled climate models. However, they are prognosticated for the late 21st century. The key factor in the model simulations for Arctic sea ice is ice thickness. If the mean thickness falls below a certain threshold value, the main part of sea ice will melt. This means that vast ice-free areas will emerge each summer.

Compared to the extent of ice - which can be measured pretty well by means of satellites - the distribution of ice thickness in the Arctic Ocean is less well-known. The Alfred Wegener Institute contributes to the estimation of the Arctic ice volume and its variability with measurement equipment, which is hauled by helicopters. This way, data from more than fifteen years are at hand and account for a decrease of ice thickness in the central Arctic. However, these measurements do not cover all relevant parts of the Arctic Ocean - the range of the helicopters is too limited. "It cannot be excluded that sea ice is simply mechanically reallocated," reports Gerdes. "Our model computations show that ice transport from eastern to western Arctic waters caused by wind was an important factor in the great ice-free areas of the Siberian Shelf in the year 2007."

RV Polarstern currently benefits from the low sea ice cover in the Arctic Ocean. Scientists on board can measure the seafloor and sample sediment probes in areas, which were unreachable a few years ago. Polarstern cruises through close pack ice with a northerly course in the direction of 80° latitude; however, since it is mostly one year old thin sea ice, it can easily be broken. So far, the participants of the expedition were able to conduct their activities without hindrance.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and makes available to international science important infrastructure, e.g. the research icebreaker "Polarstern" and research stations in the Arctic and Antarctic. AWI is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de

Further reports about: Antarctic Arctic Arctic Ocean Arctic sea ice Helmholtz Ocean Polarstern SEA crystalline sea ice

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>