Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low Arctic Sea Ice Cover in the Summer of 2008

Climate Scientists' Forecast Confirmed

The Arctic summer nears its end and the minimum extent of sea ice is reached. The Arctic ice cover amounted to 4.5 million square kilometres on September 12th.

This is slightly more than the lowest ice cover ever measured: 4.1 million square kilometres in the year 2007. Scientists are anxious about the development of sea ice because the long-time mean is 2.2 million square kilometres higher.

This development did not come about completely unexpectedly, however. A model calculation conducted at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association in early summer showed that the ice minimum of the year 2008 would lie below that of the year 2005 with almost one hundred per cent probability. A new minimum below that of the year 2008, however, was expected with a probability of just eight per cent.

"If we regard the sea ice cover from the beginning of satellite observations in the year 1979, the measurement of 2008 comes as a little surprise, because summers with a low ice cover like 2007 are usually followed by winters with a heavy ice production," explains Prof. Rüdiger Gerdes, physical oceanographer at the Alfred Wegener Institute. From 1979 to 2004, about 6 to 7.5 million square kilometres of the Arctic were usually covered with ice. Now it is the second year in a row with less than 4.5 million square kilometres. However, the following summers still have to show if this trend is to continue.

"A hitherto unanswered question is whether the sequence of two extreme years presents a transition towards a new regime of Arctic sea ice, which makes the return to former states of sea ice cover difficult," continues Gerdes. Transitions of this kind show up in coupled climate models. However, they are prognosticated for the late 21st century. The key factor in the model simulations for Arctic sea ice is ice thickness. If the mean thickness falls below a certain threshold value, the main part of sea ice will melt. This means that vast ice-free areas will emerge each summer.

Compared to the extent of ice - which can be measured pretty well by means of satellites - the distribution of ice thickness in the Arctic Ocean is less well-known. The Alfred Wegener Institute contributes to the estimation of the Arctic ice volume and its variability with measurement equipment, which is hauled by helicopters. This way, data from more than fifteen years are at hand and account for a decrease of ice thickness in the central Arctic. However, these measurements do not cover all relevant parts of the Arctic Ocean - the range of the helicopters is too limited. "It cannot be excluded that sea ice is simply mechanically reallocated," reports Gerdes. "Our model computations show that ice transport from eastern to western Arctic waters caused by wind was an important factor in the great ice-free areas of the Siberian Shelf in the year 2007."

RV Polarstern currently benefits from the low sea ice cover in the Arctic Ocean. Scientists on board can measure the seafloor and sample sediment probes in areas, which were unreachable a few years ago. Polarstern cruises through close pack ice with a northerly course in the direction of 80° latitude; however, since it is mostly one year old thin sea ice, it can easily be broken. So far, the participants of the expedition were able to conduct their activities without hindrance.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and makes available to international science important infrastructure, e.g. the research icebreaker "Polarstern" and research stations in the Arctic and Antarctic. AWI is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:

Further reports about: Antarctic Arctic Arctic Ocean Arctic sea ice Helmholtz Ocean Polarstern SEA crystalline sea ice

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>