Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of Summer Rains Stoked Long Droughts in Southwest

12.03.2013
Long-term droughts in southwestern North America often mean failure of both winter and summer rains, according to new tree-ring research.

The finding contradicts a commonly held belief regarding the region – that a dry winter rainy season is generally followed by a wet summer season, and vice versa. In fact, when severe, decades-long droughts have struck the area in centuries past, both winter and summer rains generally were sparse year after year, the new study shows.

"One of the big questions in drought studies is what prompts droughts to go on and on," said lead author Daniel Griffin, a doctoral candidate in the School of Geography and Development of the University of Arizona in Tucson. "This gives us some indication that the monsoon and its failure is involved in drought persistence in the Southwest."

A monsoon is a season of heavy rains caused by air rising over warm land, which draws in cooler, more humid air from the ocean. In most of Arizona, western New Mexico, and parts of northern Mexico--where the monsoon lasts from late spring to early fall--moisture-laden winds blow in from the Gulf of California and the eastern tropical Pacific Ocean.

The new study’s results surprised Griffin because rain gauge records for the Southwest from 1950-2000 show that dry seasons alternated with wet ones. However, the team’s new 470-year-long record, going from 2008 all the way back to 1539, shows that the wet/dry pattern of the latter part of the 20th century is not the norm – either prior to the 20th century or now, he said.

The research report by Griffin and his colleagues was published today, March 11, in Geophysical Research Letters, a journal of the American Geophysical Union.

"This is the first time researchers have used tree rings to take a closer look at the monsoon in a large and important area of the American Southwest," Griffin said. "Monsoon droughts of the past were more severe and persistent than any of the last 100 years," he added. "These major monsoon droughts coincided with decadal winter droughts."

Those droughts had major environmental and social effects, Griffin said, pointing out that the late-16th-century megadrought caused landscape-scale vegetation changes, a 17th-century drought has been implicated in the Pueblo Revolt of 1680 and the 1882-1905 drought killed more than 50 percent of Arizona’s cattle.

"The thing that’s interesting about these droughts is that we’ve reconstructed the winter precipitation, but we’ve never known what the summers were like," said co-author Connie A. Woodhouse, also of the University of Arizona, Tuscon.

Because winter precipitation has the strongest influence on annual tree growth, previous large-scale, long-term tree-ring reconstructions of the region’s precipitation history had focused only on the winter rainy season. "Now we see – wow – the summers were dry, too," Woodhouse said. "That has a big impact."

"In the Southwest, the winter precipitation is really important for water supply. This is the water that replenishes reservoirs and soil moisture," she said. "But the monsoon mediates the demand for water in the summer."

Until recently, most tree-ring researchers, known as dendrochronologists, have looked at the total width of trees’ annual rings to reconstruct past climate. Few teased out the seasonal climate signal recorded in the narrow part of the growth ring laid down in late summer known as latewood.

To figure out the region’s past history of monsoon precipitation, the scientists needed to measure latewood from tree-ring samples stored in the archives of the University of Arizona Laboratory of Tree-Ring Research and go into the field to take additional samples of tree rings.

The team looked at annual growth rings from two different species, Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) throughout the weather forecast region called North American Monsoon Region 2, or NAM2.

In all, the researchers used samples from 50 to 100 trees at each of 53 different sites throughout southwestern North America. The team’s climate analyses focused on NAM2, which covers most of Arizona, western New Mexico and northern parts of the Mexican states of Sonora and Chihuahua.

Griffin said, "It was a massive undertaking -- we employed about 15 undergraduates over a four-year period to measure almost 1 million tree rings."

One possible next step, Woodhouse said, is to expand the current project to other areas of the Southwest and into Mexico, where the monsoon has a bigger influence on annual precipitation.

Another would be using tree-ring reconstructions of the Southwest’s fire histories to see how wildfires are related to summer precipitation.

"Before I moved to the Southwest, I didn’t realize how critically important the summer rains are to the ecosystems here," Griffin said. "The summer monsoon rains have allowed humans to survive in the Southwest for at least 4,000 years."

The National Science Foundation, the National Oceanic and Atmospheric Administration and the U.S. Environmental Protection Agency supported the research.

Title:

“North American monsoon precipitation reconstructed from tree-ring latewood”
Authors:
Daniel Griffin and Connie A. Woodhouse Laboratory of Tree-Ring Research and School of Geography and Development, University of Arizona, Tucson, USA;David M. Meko Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA;David W. Stahle Department of Geosciences, University of Arkansas, Fayetteville, USA;Holly L. Faulstich Laboratory of Tree-Ring Research and School of Geography and Development, University of Arizona, Tucson, USA;Carlos Carrillo Department of Atmospheric Sciences, University of Arizona, Tucson, USA;Ramzi Touchan Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA;Christopher L. Castro Department of Atmospheric Sciences, University of Arizona, Tucson, USA;Steven W. Leavitt Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA.

Contact information for the authors:

Contact information for the authors:
Daniel Griffin
School of Geography and Development
Laboratory of Tree-Ring Research
520-621-0858
dgriffin@email.arizona.edu
http://u.arizona.edu/~dgriffin/
Connie Woodhouse
School of Geography and Development
Laboratory of Tree-Ring Research
520-626-0235
conniew1@email.arizona.edu
http://cwoodhouse.faculty.arizona.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>