Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside a Snowstorm: Scientists Obtain Close-Up Look at Old Man Winter

12.01.2011
Doppler-on-Wheels Gives New View of Lake-Effect Snows

In this winter of heavy snows--with more on the way this week--nature's bull's-eye might be Oswego, N.Y., and the nearby Tug Hill Plateau.


DOW Doppler radar of cells in a snowband; the coiled hooks are the most intense snows.

There the proximity of the Great Lakes whips wind and snow into high gear. Old Man Winter then blows across New York state, burying cities and towns in snowdrifts several feet high. This season, however, something is standing in his way.

The Doppler-on-Wheels (DOW), a data-collecting radar dish, is waiting. This month and next, scientists inside the DOW are tracking snowstorms in and around Oswego to learn what drives lake-effect snowstorms that form parallel to the long axis of a Great Lake and produce enormous snowfall rates.

These long lake-axis-parallel (LLAP) bands of snow are more intense than those of other snow squalls and produce some of the highest snowfall rates and amounts in the world, say atmospheric scientists Scott Steiger of the State University of New York (SUNY)-Oswego, Jeffrey Frame of the University of Illinois at Urbana-Champaign, and Alfred Stamm of SUNY-Oswego.

"The mobility of a DOW," Steiger says, "is ideal for following lake-effect storms. The DOW will allow us to witness them as they form and cross lakes, which other weather radars can't do."

The DOW, or more properly "DOWs" as there are three, is a National Science Foundation (NSF) atmospheric science facility.

A DOW looks more like the dish of a radio telescope than a sophisticated weather instrument. It's mounted on the back of a flat-bed truck. With a DOW on board, the truck becomes an odd configuration of generator, equipment and operator cabin.

Ungainly as it may appear, it's ideally suited to provide detailed information on the inner workings of snow and other storms, says Josh Wurman, director of the Center for Severe Weather Research (CSWR) in Boulder, Colo.

Wurman should know. He and colleagues developed the first DOW in 1995.

The DOW uses Doppler radar to produce velocity data about severe storms at a distance.

When a DOW is deployed, it collects fine-scale data from within a snowstorm and displays features that can't be seen with more distant radars.

The DOW radars are dual polarization, says Wurman, which means that they send out both horizontally- and vertically-oriented energy. By looking at differences in the energy bounced back from these horizontal and vertical beams, scientists can learn more about the snowflakes, ice, rain and snow pellets in snowbands.

"NSF's dual-polarization DOW radars offer an important new avenue toward better understanding this intense winter weather phenomenon affecting the Great Lakes region," says Brad Smull, program director in NSF's Division of Atmospheric and Geospace Sciences, which funds the DOWs and the LLAP project.

The DOWs measure Doppler winds, snow intensity, and properties related to whether snow is dense, comprised of pellets, or formed from loose collections of traditional six-sided snowflakes. A storm's snow crystal type plays a major role in whether lake-effect snowbands drop a few inches of snow--or more than two feet.

"Understanding snow type is critically important," says Wurman.

The DOWs collect data that will be used to determine how LLAP snowbands intensify and weaken, and move across a region. The scientists are right behind.

"Instead of waiting for snowbands to come to us," says Wurman, "we and the DOWs are going to them."

After forecasting likely snowband events, Steiger, Wurman and colleagues and the DOW drive to one of more than 30 sites near Lake Ontario, Lake Erie, and the Tug Hill Plateau to monitor LLAP snowbands.

During the past week, scientists deployed the DOW to four locations near Oswego and Rochester to study intense snowbands. The bands dropped snow at up to four inches per hour, with final totals of more than two feet.

Initial findings are that intense storm circulations were observed in the bands, and that the snow type changed during the passage of the storm.

More lake effect snows are forecast for this weekend. DOWs and scientists are again heading to New York hilltops to peer inside.

Old Man Winter may have no choice but to give up his secrets.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>