Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ice-age reptile extinctions provide a glimpse of likely responses to human-caused climate change

A wave of reptile extinctions on the Greek islands over the past 15,000 years may offer a preview of the way plants and animals will respond as the world rapidly warms due to human-caused climate change, according to a University of Michigan ecologist and his colleagues.
The Greek island extinctions also highlight the critical importance of preserving habitat corridors that will enable plants and animals to migrate in response to climate change, thereby maximizing their chances of survival.

As the climate warmed at the tail end of the last ice age, sea levels rose and formed scores of Aegean islands that had formerly been part of the Greek mainland. At the same time, cool and moist forested areas dwindled as aridity spread through the region.

In response to the combined effects of a shifting climate, vegetation changes and ever-decreasing island size, many reptile populations perished.

To gain a clearer understanding of the past consequences of climate change, Johannes Foufopoulos (foo FOP oo los) and his colleagues calculated the population extinction rates of 35 reptile species—assorted lizards, snakes and turtles—from 87 Greek islands in the northeast Mediterranean Sea. The calculated extinction rates were based on the modern-day presence or absence of each species on islands that were connected to the mainland during the last ice age.

Foufopoulos and his colleagues found a striking pattern to the island extinctions. In most cases, reptile populations disappeared on the smallest islands first—the places where the habitat choices were most limited.

Especially hard hit were "habitat specialist" reptiles that required a narrow range of environmental conditions to survive. In addition, northern-dwelling species that required cool, moist conditions showed some of the highest extinction rates.

The study results appear in the January edition of American Naturalist.

The researchers conclude that a similar pattern of extinctions will emerge at various spots across the globe as the climate warms in the coming decades and centuries. In addition to adapting to a changing climate, plants and animals will be forced to traverse an increasingly fragmented natural landscape.

In many places, small chunks of natural habitat are now surrounded by vast, inhospitable expanses of agricultural and urbanized land, just as those newly formed Aegean islands were surrounded by rising seas thousands of years ago.

"The widespread fragmentation of natural habitats greatly exacerbates the effects of climate change and undermines the ability of species to adapt to the new conditions," said Foufopoulos, an associate professor at the U-M School of Natural Resources and Environment and the Department of Ecology and Evolutionary Biology.

In addition to Foufopoulos, the paper's authors are Anthony Ives of the University of Wisconsin and A. Marm Kilpatrick of the University of California, Santa Cruz.

"The lessons learned from the wave of reptile extinctions suggest that if species are to survive the global climate shift already underway, not only do humans have to set significantly more land aside for conservation, but these protected areas will also need to be connected through a network of habitat corridors that allow species migration," Foufopoulos said.

Over the last several decades, global warming has resulted in a poleward shift in the range of many birds, butterflies and other creatures. This shift to cooler climes—northward in the Northern Hemisphere and southward in the Southern Hemisphere—is expected to continue in the future as organisms seek out places where temperature and moisture levels permit their survival.

Funding for the project was provided through the University of Wisconsin's Department of Zoology, the University of Michigan, the Princeton Environmental Institute, the Cleveland Dodge Foundation and the U.S. National Science Foundation.

U-M Sustainability fosters a more sustainable world through collaborations across campus and beyond aimed at educating students, generating new knowledge, and minimizing our environmental footprint. Learn more at

Jim Erickson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>