Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice-age reptile extinctions provide a glimpse of likely responses to human-caused climate change

10.12.2010
A wave of reptile extinctions on the Greek islands over the past 15,000 years may offer a preview of the way plants and animals will respond as the world rapidly warms due to human-caused climate change, according to a University of Michigan ecologist and his colleagues.
The Greek island extinctions also highlight the critical importance of preserving habitat corridors that will enable plants and animals to migrate in response to climate change, thereby maximizing their chances of survival.

As the climate warmed at the tail end of the last ice age, sea levels rose and formed scores of Aegean islands that had formerly been part of the Greek mainland. At the same time, cool and moist forested areas dwindled as aridity spread through the region.

In response to the combined effects of a shifting climate, vegetation changes and ever-decreasing island size, many reptile populations perished.

To gain a clearer understanding of the past consequences of climate change, Johannes Foufopoulos (foo FOP oo los) and his colleagues calculated the population extinction rates of 35 reptile species—assorted lizards, snakes and turtles—from 87 Greek islands in the northeast Mediterranean Sea. The calculated extinction rates were based on the modern-day presence or absence of each species on islands that were connected to the mainland during the last ice age.

Foufopoulos and his colleagues found a striking pattern to the island extinctions. In most cases, reptile populations disappeared on the smallest islands first—the places where the habitat choices were most limited.

Especially hard hit were "habitat specialist" reptiles that required a narrow range of environmental conditions to survive. In addition, northern-dwelling species that required cool, moist conditions showed some of the highest extinction rates.

The study results appear in the January edition of American Naturalist.

The researchers conclude that a similar pattern of extinctions will emerge at various spots across the globe as the climate warms in the coming decades and centuries. In addition to adapting to a changing climate, plants and animals will be forced to traverse an increasingly fragmented natural landscape.

In many places, small chunks of natural habitat are now surrounded by vast, inhospitable expanses of agricultural and urbanized land, just as those newly formed Aegean islands were surrounded by rising seas thousands of years ago.

"The widespread fragmentation of natural habitats greatly exacerbates the effects of climate change and undermines the ability of species to adapt to the new conditions," said Foufopoulos, an associate professor at the U-M School of Natural Resources and Environment and the Department of Ecology and Evolutionary Biology.

In addition to Foufopoulos, the paper's authors are Anthony Ives of the University of Wisconsin and A. Marm Kilpatrick of the University of California, Santa Cruz.

"The lessons learned from the wave of reptile extinctions suggest that if species are to survive the global climate shift already underway, not only do humans have to set significantly more land aside for conservation, but these protected areas will also need to be connected through a network of habitat corridors that allow species migration," Foufopoulos said.

Over the last several decades, global warming has resulted in a poleward shift in the range of many birds, butterflies and other creatures. This shift to cooler climes—northward in the Northern Hemisphere and southward in the Southern Hemisphere—is expected to continue in the future as organisms seek out places where temperature and moisture levels permit their survival.

Funding for the project was provided through the University of Wisconsin's Department of Zoology, the University of Michigan, the Princeton Environmental Institute, the Cleveland Dodge Foundation and the U.S. National Science Foundation.

U-M Sustainability fosters a more sustainable world through collaborations across campus and beyond aimed at educating students, generating new knowledge, and minimizing our environmental footprint. Learn more at sustainability.umich.edu

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu
http://ns.umich.edu/htdocs/releases/story.php?id=8164

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>