Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice age beasts on the Kyffhäuser range - Migration of woolly rhinoceroses earlier than assumed

11.11.2008
The newly described skull of the oldest woolly rhinoceros in Europe shows that these giant creatures - with two impressively large horns on their foreheads - once roamed across central Germany. The large shaggy mammals grazed at the foot of the Kyffhäuser range, whose unforested, rocky slopes loomed out of the broad, bleak plains of northern Thuringia 460,000 years ago. The climate at this time was icy cold and far drier than today.

At the time, the brow of a glacier existed only a few kilometres away, which expanded during the Elsterian ice age from Scandinavia towards the southwest and spread across the monotonous grassland. But well adapted creatures such as mammoths, reindeer, musk ox and other cold climate animals were able to survive in what was known as the mammoth steppe and found suitable food sources here.

The uniform type of vegetation that emerged under these particular climatic conditions once stretched from the coasts of the Arctic Ocean to the Pacific and extended as far as central Europe in the west.

"This is the oldest woolly rhinoceros found in Europe, and it gives us a precise date for the first appearance of cold climate animals spreading throughout Asia and Europe during the ice ages. The characteristic species of mammals emerged together and across the continent", is how palaeontologist Ralf-Dietrich Kahlke explains the finding's significance.

The skull was discovered more than a century ago in a gravel pit at the foot of the Kyffhäuser range near Bad Frankenhausen, but it was found as more than 50 fragments. These have only now been pieced together at Weimar's Senckenberg Research Institute to make this the most complete Coelodonta tologoijensis in the world. The reconstructed specimen provides the first evidence that this woolly rhinoceros species had advanced into Europe even before the first glacial stage. The animal was around 12 years old when its life ended about 460,000 years ago. It died in a melt-water delta flowing off the inland glacier that had advanced southwest as far as central Germany.

The ancestors of this large ice age mammal evolved around two million years earlier in the northern foothills of the Himalayas. For a long time Coelodonta lived exclusively in an area of central China around 6,000 kilometres away and east of Lake Baikal. The prevailing conditions at the time were marked by a continental dry climate and extreme seasonal temperature fluctuations, so the central Asian ancestors of the Bad Frankenhausen woolly rhinoceros were adapted to foraging for meagre steppe food and very well equipped for the winter cold.

The recently published Senckenberg study of the oldest rhinoceros from the central European mammoth steppe, by Ralf-Dietrich Kahlke and Frédéric Lacombat, found that woolly rhinoceroses continued to adapt to meet the conditions they experience throughout many millennia. The 'original' diet of Coelodonta two million years earlier was rather mixed, including the leaves of shrubs and trees, but as the landscape was increasingly desertified by changing climatic conditions the animals became prime specialists in browsing for steppe food growing lower down on the ground. "Analysis of the Frankenhausen specimen shows that Coelodonta tologoijensis carried its head low along the ground and had a lawnmower-like mouth with a huge set of grinding teeth. As the climate became colder, these animals became more efficient at utilising the available food ", says Ralf-Dietrich Kahlke.

Kahlke, who is Head of the Weimar Department of Quaternary Palaeontology, and his co-author Frédéric Lacombat have investigated a number of woolly rhinoceros skulls from Asia and Europe. The facet-like stress marks on the impressively large frontal horns retrieved from permafrost soils show that the animals' status symbol was not only used as a weapon against other great ice age fauna but was also used in ingesting food.

Notes to Editors:

1. The paper, Kahlke, R. -D., Lacombat, F.: "The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas" is published in Quarternary Science Review, Volume 27, November 2008 -

Copies of the paper can be obtained on request from Doris von Eiff (details below).

2. Dr. habil. Ralf-Dietrich Kahlke is Palaeontologist and Head of the Weimar Department for Quarternary Palaeontology, which is a branch of the Frankfurt Senckenberg Research Institute and Natural History Museum. - Dr. Frédéric Lacombat (Musée Crozatier in Le Puy-en Velay, France) worked as postdoc-student at the Weimar department.

3. Larger images of the these and other pictures can be obtained from Doris von Eiff (details below). - A reference to the copyright is obligatory.

4. The skull of Coelodonta tologoijensis belongs to the Weimar collections.

Press contact: Doris von Eiff, doris.voneiff@senckenberg.de. +49 (0)69 7542 1257, mobil: +49 (0)173 54 50 196

Contact: Ralf-Dietrich Kahlke, rdkahlke@senckenberg.de, +49 (0)3643 49309-3333

Doris von Eiff | idw
Further information:
http://www.senckenberg.de/root/index.php?page_id=2695
http://www.senckenberg.de/root/index.php?page_id=99

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>