Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Himalayan glaciers retreating at accelerated rate in some regions but not others

13.09.2012
Glaciers in the eastern and central regions of the Himalayas appear to be retreating at accelerating rates, similar to those in other areas of the world, while glaciers in the western Himalayas are more stable and could be growing, says a new report from the National Research Council.

The report examines how changes to glaciers in the Hindu Kush-Himalayan region, which covers eight countries across Asia, could affect the area's river systems, water supplies, and the South Asian population. The mountains in the region form the headwaters of several major river systems -- including the Ganges, Mekong, Yangtze, and Yellow rivers -- which serve as sources of drinking water and irrigation supplies for roughly 1.5 billion people.

The entire Himalayan climate is changing, but how climate change will impact specific places remains unclear, said the committee that wrote the report. The eastern Himalayas and Tibetan Plateau are warming, and the trend is more pronounced at higher elevations. Models suggest that desert dust and black carbon, a component of soot, could contribute to the rapid atmospheric warming, accelerated snowpack melting, and glacier retreat.

While glacier melt contributes water to the region's rivers and streams, retreating glaciers over the next several decades are unlikely to cause significant change in water availability at lower elevations, which depend primarily on monsoon precipitation and snowmelt, the committee said. Variations in water supplies in those areas are more likely to come from extensive extraction of groundwater resources, population growth, and shifts in water-use patterns. However, if the current rate of retreat continues, high elevation areas could have altered seasonal and temporal water flow in some river basins. The effects of glacier retreat would become evident during the dry season, particularly in the west where glacial melt is more important to the river systems. Nevertheless, shifts in the location, intensity, and variability of both rain and snow will likely have a greater impact on regional water supplies than glacier retreat will.

Melting of glacial ice could play an important role in maintaining water security during times of drought or similar climate extremes, the committee noted. During the 2003 European drought, glacial melt contributions to the Danube River in August were about three times greater than the 100-year average. Water stored as glacial ice could serve as the Himalayan region's hydrologic "insurance," adding to streams and rivers when it is most needed. Although retreating glaciers would provide more meltwater in the short term, the loss of glacier "insurance" could become problematic over the long term.

Water resources management and provision of clean water and sanitation are already a challenge in the region, and the changes in climate and water availability warrant small-scale adaptations with effective, flexible management that can adjust to the conditions, the committee concluded. Current efforts that focus on natural hazard and disaster reduction in the region could offer useful lessons when considering and addressing the potential for impacts resulting from glacial retreat and changes in snowmelt processes in the region.

Many basins in the region are "water-stressed" due to both social changes and environmental factors, and this stress is projected to intensify with large forecasted population growth, the committee concluded. Climate change could exacerbate this stress in the future.

Although the history of international river disputes suggests that cooperation is a more likely outcome than violent conflict in this region, social conditions could change. Therefore, modifications in water supplies could play an increasing role in political tensions, especially if existing water management institutions do not evolve to take better account of the region's social, economic, and ecological complexities, the committee said.

The National Research Council, the operating arm of the National Academy of Sciences and National Academy of Engineering, is an independent, nonprofit institution that provides science and technology advice under a congressional charter granted to the NAS in 1863. A committee roster follows.

Contacts:

Jennifer Walsh, Media Relations Officer

Luwam Yeibio, Media Relations Assistant
Office of News and Public Information
202-334-2138; e-mail lyeibio@nas.edu
Pre-publication copies of Himalayan Glaciers: Climate Change, Water Resources, and Water Security are available from the National Academies Press; tel. 202-334-3313 or 1-800-624-6242 or on the Internet at http://www.nap.edu. Reporters may obtain a copy from the Office of News and Public Information (contacts listed above).

NATIONAL RESEARCH COUNCIL

Division on Earth and Life Studies

Board on Atmospheric Sciences and Climate and Water Science and Technology Board

Division of Behavioral and Social Sciences and Education Committee on Population

Committee on Himalayan Glaciers, Climate Change, and Implications for Downstream Populations

Henry J. Vaux Jr. (chair)
Professor Emeritus of Resource Economics
University of California at Berkeley and Riverside
El Cerrito, Calif.
Deborah Balk
Acting Associate Director
Institute for Demographic Research, and
Associate Professor
Baruch School of Public Affairs
Baruch College
City University of New York
New York City
Edward R. Cook
Associate Research Scientist
Tree Ring Research Laboratory
Lamont-Doherty Geological Observatory
Palisades, N.Y.
William K. Lau
Chief
Laboratory for Atmospheres
NASA Goddard Space Flight Center
Greenbelt, Md.
Marc Levy
Deputy Director
Center for International Earth Sciences Information Network
Columbia University
Palisades, N.Y.
Elizabeth L. Malone
Staff Scientist IV
Joint Global Change Research Institute
College Park, Md.
Robert McDonald
Vanguard Scientist
The Nature Conservancy
Arlington, Va.
Drew Shindell
Senior Scientist
NASA Goddard Institute for Space Studies
New York City
Lonnie G. Thompson*
Distinguished University Professor
Byrd Polar Research Center
Ohio State University
Columbus
James L. Wescoat Jr.
Professor
Aga Khan Program for Islamic Architecture
School of Architecture and Planning
Massachusetts Institute of Technology
Cambridge
Mark W. Williams
Professor
University of Colorado
Boulder
RESEARCH COUNCIL STAFF

Maggie Walser
Study Director
* Member, National Academy of Sciences

Jennifer Walsh | EurekAlert!
Further information:
http://www.nas.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>