Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global sunscreen won't save corals

18.06.2009
Emergency plans to counteract global warming by artificially shading the Earth from incoming sunlight might lower the planet's temperature a few degrees, but such "geoengineering" solutions would do little to stop the acidification of the world oceans that threatens coral reefs and other marine life, report the authors of a new study in the journal Geophysical Research Letters*. The culprit is atmospheric carbon dioxide, which even in a cooler globe will continue to be absorbed by seawater, creating acidic conditions.

"There would be a slight reduction in this problem, because land plants would be expected to be able to grow more vigorously in a high CO2, but cool world," says Ken Caldeira of the Carnegie Institution's Department of Global Ecology, a co-author of the study with lead author Damon Matthews of Concordia University, Canada, and Carnegie geochemist Long Cao. Land plants and soils would hold onto more carbon in this scenario, so less would find its way into the oceans. "However this expansion of the land biosphere, while it's a slight help to ocean acidification is not enough to make a big difference."

A widely-discussed proposal for countering warming with geoengineering involves injecting small, reflective particles into the upper atmosphere. This would partially block incoming sunlight before it reached the Earth's surface, lowering global temperatures just as volcanic ash from the Mount Pinatubo did following its eruption in 1991. But critics have warned that such a scheme might also alter rainfall patterns, damage the planet's ozone layer, or have other unexpected effects.

Until the current study, which used a computer model of the Earth's climate system and biosphere to simulate the effect of geoengineering on climate and the ocean's chemistry, the potential impact of such a scheme on ocean acidification had never been calculated. In the simulations, reduced sunlight cooled the planet as expected,,and it also slightly slowed the rise in atmospheric carbon dioxide, as more carbon was absorbed by natural sinks. But this slight change was not enough to significantly mitigate ocean acidification.

Ocean acidification rivals global warming as a threat to marine ecosystems, especially coral reefs, which need to be surrounded with mineral-saturated water in order to grow. Rising levels of carbon dioxide make seawater more acidic, leading to lower mineral saturation. Recent research has indicated that continued carbon dioxide emissions will cause coral reefs to begin dissolving within a few decades, putting the survival of these ecosystems at extreme risk.

Geoengineering's minimal effect on ocean acidification adds another factor to the debate over the advisability of intentionally tampering with the climate system. Some see geoengineering as a possibly necessary response to the prospect of devastating climate change caused by increased human emission of greenhouse gases. Others see it as reckless tinkering with the planet's complex and finely tuned climate system that could do more harm than good.

"Geoengineering approaches come with all sorts of risks," says Caldiera. "It is important we learn about the the full set of these risks and all of their implications." He considers deep cuts in human emissions of carbon dioxide to be the most effective safeguard against a global environmental crisis. "One of the good reasons to prefer CO2 emissions reductions over geoengineering is that CO2 emissions reductions will protect the oceans from the threat of ocean acidification, whereas these geoengineering options will not."

* Matthews, H. D., L. Cao, and K. Caldeira (2009), Sensitivity of ocean acidification to geoengineered climate stabilization, Geophys. Res. Lett., 36, 28 May 2009

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Ken Caldeira | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>