Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global glacier melt continues

29.01.2009
Glaciers around the globe continue to melt at high rates. Tentative figures for the year 2007, of the World Glacier Monitoring Service at the University of Zurich, Switzerland, indicate a further loss of average ice thickness of roughly 0.67 meter water equivalent (m w.e.). Some glaciers in the European Alps lost up to 2.5 m w.e.

The new still tentative data of more than 80 glaciers confirm the global trend of fast ice loss since 1980. Glaciers with long-term observation series (30 glaciers in 9 mountain ranges) have experienced a reduction in total thickness of more than 11 m w.e. until 2007. The average annual ice loss during 1980-1999 was roughly 0.3 m w.e. per year. Since 2000, this rate has increased to about 0.7 m w.e. per year.

Michael Zemp, glaciologist and research associate of the WGMS, said: «The average ice loss in 2007 was not as extreme as in 2006, but there were large differences between mountain ranges. Glaciers in the European Alps lost up to 2.5 meters water equivalent of ice, whereas maritime glaciers in Scandinavia were able to gain more than a meter in thickness. However, 2007 is now the sixth year of this century in which the average ice loss of the reference glaciers has exceeded half a meter. This has resulted in a more than doubling of the melt rates of the 1980s and 90s.»

For the observation period 2007, dramatic ice losses were reported from glaciers in the European Alps, such as of the Hintereisferner (-1.8 m w.e.) or the Sonnblickkess (-2.2 m w.e.) in Austria, the Sarennes (-2.5 m w.e.) in France, the Caresèr (-2.8 m w.e.) in Italy, or of the Silvretta (-1.3 m w.e.) and Gries (-1.7 m w.e.) in Switzerland. In Norway, many maritime glaciers were able to gain mass, e.g. the Nigardsbreen (+1.0 m w.e.) or the Ålfotbreen (+1.3 m w.e.), although the glaciers further inland have continued to shrink, e.g. the Hellstugubreen or the Gråsubreen (both with -0.7 m w.e.).

All mass balance programmes in South American reported negative values ranging from -0.1 m w.e. at the Echaurren Norte in Chile to -2.2 m w.e. at the Ritacuba Negro in Columbia. In North America some positive values were reported from the North Cascade Mountains and the Juneau Ice Field together with a continued ice loss from the glaciers in the Kenai Mountains and the Alaskan Range as well as from Canada’s Coast Mountains and High Arctic.

Measuring unit ‘water equivalent’:
Glaciologists express the annual mass balance, i.e. the gain or loss in thickness, of a glacier in ‘meter water equivalent’ (m w.e.). This standardized unit takes the different densities of change measurements in ice, firn and snow into account (see Photos 1 and 2). One meter of ice thickness corresponds to about 0.9 m w.e.
World Glacier Monitoring Service:
The internationally coordinated glacier monitoring was initiated in 1894, following the example of the Swiss national observation network, and has been mainly under Swiss leadership since then. Today, the World Glacier Monitoring Service (WGMS) is responsible for the collection and publication of standardized glacier data from around the world. The WGMS is located at the University of Zurich, Switzerland, and maintains a collaborative network of national correspondents and principal investigators in the countries involved in glacier monitoring. The long-term measurement series of glacier mass balance produces one of the essential variables within the international climate-related monitoring programmes.

Beat Mueller | alfa
Further information:
http://www.uzh.ch
http://www.wgms.ch/mbb/mbb10/sum07.html

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>