Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global glacier melt continues

29.01.2009
Glaciers around the globe continue to melt at high rates. Tentative figures for the year 2007, of the World Glacier Monitoring Service at the University of Zurich, Switzerland, indicate a further loss of average ice thickness of roughly 0.67 meter water equivalent (m w.e.). Some glaciers in the European Alps lost up to 2.5 m w.e.

The new still tentative data of more than 80 glaciers confirm the global trend of fast ice loss since 1980. Glaciers with long-term observation series (30 glaciers in 9 mountain ranges) have experienced a reduction in total thickness of more than 11 m w.e. until 2007. The average annual ice loss during 1980-1999 was roughly 0.3 m w.e. per year. Since 2000, this rate has increased to about 0.7 m w.e. per year.

Michael Zemp, glaciologist and research associate of the WGMS, said: «The average ice loss in 2007 was not as extreme as in 2006, but there were large differences between mountain ranges. Glaciers in the European Alps lost up to 2.5 meters water equivalent of ice, whereas maritime glaciers in Scandinavia were able to gain more than a meter in thickness. However, 2007 is now the sixth year of this century in which the average ice loss of the reference glaciers has exceeded half a meter. This has resulted in a more than doubling of the melt rates of the 1980s and 90s.»

For the observation period 2007, dramatic ice losses were reported from glaciers in the European Alps, such as of the Hintereisferner (-1.8 m w.e.) or the Sonnblickkess (-2.2 m w.e.) in Austria, the Sarennes (-2.5 m w.e.) in France, the Caresèr (-2.8 m w.e.) in Italy, or of the Silvretta (-1.3 m w.e.) and Gries (-1.7 m w.e.) in Switzerland. In Norway, many maritime glaciers were able to gain mass, e.g. the Nigardsbreen (+1.0 m w.e.) or the Ålfotbreen (+1.3 m w.e.), although the glaciers further inland have continued to shrink, e.g. the Hellstugubreen or the Gråsubreen (both with -0.7 m w.e.).

All mass balance programmes in South American reported negative values ranging from -0.1 m w.e. at the Echaurren Norte in Chile to -2.2 m w.e. at the Ritacuba Negro in Columbia. In North America some positive values were reported from the North Cascade Mountains and the Juneau Ice Field together with a continued ice loss from the glaciers in the Kenai Mountains and the Alaskan Range as well as from Canada’s Coast Mountains and High Arctic.

Measuring unit ‘water equivalent’:
Glaciologists express the annual mass balance, i.e. the gain or loss in thickness, of a glacier in ‘meter water equivalent’ (m w.e.). This standardized unit takes the different densities of change measurements in ice, firn and snow into account (see Photos 1 and 2). One meter of ice thickness corresponds to about 0.9 m w.e.
World Glacier Monitoring Service:
The internationally coordinated glacier monitoring was initiated in 1894, following the example of the Swiss national observation network, and has been mainly under Swiss leadership since then. Today, the World Glacier Monitoring Service (WGMS) is responsible for the collection and publication of standardized glacier data from around the world. The WGMS is located at the University of Zurich, Switzerland, and maintains a collaborative network of national correspondents and principal investigators in the countries involved in glacier monitoring. The long-term measurement series of glacier mass balance produces one of the essential variables within the international climate-related monitoring programmes.

Beat Mueller | alfa
Further information:
http://www.uzh.ch
http://www.wgms.ch/mbb/mbb10/sum07.html

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>