Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Map Rocks to Soak CO2 From Air

09.03.2009
6,000 Square Miles in U.S. Might Turn Emissions to Harmless Solids

To slow global warming, scientists are exploring ways to pull carbon dioxide from the air and safely lock it away. Trees already do this naturally through photosynthesis; now, in a new report, geologists have mapped large rock formations in the United States that can also absorb CO2, which they say might be artificially harnessed to do the task at a vastly increased pace.

The report, by scientists at Columbia University’s Earth Institute and the U.S. Geological Survey, shows 6,000 square miles of ultramafic rocks at or near the surface. Originating deep in the earth, these rocks contain minerals that react naturally with carbon dioxide to form solid minerals. Earth Institute scientists are experimenting with ways to speed this natural process, called mineral carbonation. If the technology takes off, geologic formations around the world could provide a vast sink for heat-trapping carbon dioxide released by humans.

Lead author Sam Krevor, a graduate student working through the Earth Institute’s Lenfest Center for Sustainable Energy, says the United States’ ultramafic rocks could be enough to stash more than 500 years of U.S. CO2 production. Conveniently, most of them are clustered in strips along the east and west coasts--some near major cities including New York, Baltimore and San Francisco. "We're trying to show that anyone within a reasonable distance of these rock formations could use this process to sequester as much carbon dioxide as possible," said Krevor.

So-called carbon sequestration has become a hot area of research, but so far, most work has focused on storing liquid or gaseous CO2 underground where there is room: in saline aquifers, depleted oil wells and porous coal seams that are not commercially viable. However, concern about leaks has scientists pursuing natural chemical reactions within the earth to turn the carbon back into a solid.

Ultramafic rocks generally form in earth’s mantle, starting some 12 miles under the surface and extending down hundreds of miles. Bits of these rocks—peridotite, dunite, lherzholite and others-- may be squeezed to the surface when continental plates collide with oceanic plates, or, less often, when the interiors of continents thin and develop rifts. Because of their chemical makeup, when the rocks are exposed to carbon dioxide, they react to form common limestone and chalk. A map accompanying the report shows that most such rocks are found in and around coastal mountain ranges, with the greatest concentrations in California, Oregon and Washington, and along the Appalachians from New England to Alabama. Some also occur in the interior, including Montana. Worldwide, other formations are scattered across Eurasia and Australia.

Klaus Lackner, who directs the Lenfest Center, helped originate the idea of mineral sequestration in the 1990s. The U.S. survey is the first of what Lackner hopes will become a global mapping effort. "It's a really big step forward," he said. Krevor produced the map as part of his PhD. dissertation, with help from another Columbia student, Christopher Graves, and two USGS researchers, Bradley Van Gosen and Anne McCafferty. By combining more than a hundred existing maps, the researchers were able to pinpoint the areas nationally where ultramafic rocks are most abundant.

Another rock, common volcanic basalt, also reacts with CO2, and efforts are underway to map this in detail as well. The U.S. Department of Energy has been working on a basalt atlas for the northwestern United States as part of its Big Sky Carbon Sequestration Partnership; extensive mapping in Washington, Oregon and Idaho has already been done through Idaho State University.

The major drawback to natural mineral carbonation is its slow pace: normally, it takes thousands of years for rocks to react with sizable quantities of CO2. But scientists are experimenting with ways to speed the reaction up by dissolving carbon dioxide in water and injecting it into the rock, as well as capturing heat generated by the reaction to accelerate the process. “It offers a way to permanently get rid of CO2 emissions,” said Juerg Matter, a scientist at Columbia’s Lamont-Doherty Earth Observatory, where a range of projects is underway.

Matter and his colleague Peter Kelemen are currently researching peridotite formations in Oman, which they say could be used to mineralize as much as 4 billion tons of CO2 a year, or about 12 percent of the world’s annual output. And in Iceland, Matter is about to participate in the first major pilot study on CO2 sequestration in a basalt formation. In May, he and three other Lamont-Doherty scientists will join Reykjavik Energy and others to inject CO2-saturated water into basalt formations there. Over nine months, the rock is expected to absorb 1,600 tons of CO2 generated by a nearby geothermal power plant. Matter and another Lamont-Doherty scientist, David Goldberg, are also involved in a study by Pacific Northwest National Laboratory, which will eventually inject 1,000 tons of C02 into formations beneath land owned by a paper mill near Wallula, Wash.

One model is to capture CO2 directly from power-plant smokestacks or other industrial facilities, combine it with water and pipe it into the ground, as in the upcoming Iceland project. Lackner and his colleagues are also working on a process using “artificial trees” that would remove CO2 already emitted into the atmosphere.

Combining rocks and carbon dioxide could provide an added benefit, as Krevor points out. For decades, some large U.S. peridotite formations were mined for asbestos, used for insulation and other purposes. After a link between asbestos and cancer was proven, the substance was banned for most uses, and the mines were closed. Mine tailings left behind, at Belvidere Mountain in Vermont and various sites in California, provide a ready supply of crushed rocks. These potentially hazardous tailings would be rendered harmless during the mineralization process.

The report, Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States, is at: http://pubs.usgs.gov/ds/414/

Kim Martineau | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>