Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First fruitful, then futile: ammonites or the boon and bane of many offspring

23.04.2012
Ammonites changed their reproductive strategy from initially few and large offspring to numerous and small hatchlings. Thanks to their many offspring, they survived three mass extinctions, a research team headed by paleontologists from the University of Zurich has discovered.

For 300 million years, they were the ultimate survivors. They successfully negotiated three mass extinctions, only to die out eventually at the end of the Cretaceous along with the dinosaurs: Ammonoids, or ammonites as they are also known, were marine cephalopods believed to be related to today’s squid and nautiloids. Ammonoids changed their reproductive strategy early on in the course of evolution.


These marcasite-coated ammonites were discovered during the redevolpment of the railway station in Bielefeld, Germany. Picture: Paul Marx / PIXELIO

However, what was once a successful initial strategy may well have proved to be a fatal boomerang at the end of the Cretaceous, as an international team of researchers headed by paleontologists from the University of Zurich demonstrate in a study recently published in the science journal Evolution.

Embryos already had coiled shells
At the beginning of their evolution, ammonoids had straighter shells, which, like other mollusks, they began to coil during the Devonian Period. The precise reason behind this change is unknown. The selection pressure in favor of more tightly coiled shells is believed to have sprung from the ammonoids’ natural predators. As the scientists have now discovered, the shell change also affected the ammonoid embryos. “In the oldest ammonoids, the embryonic shells were considerably bigger and coiled less tightly than in later forms,” explains Kenneth De Baets, a paleontologist at the University of Zurich, summing up the latest findings.
Smaller hatchlings, more offspring
There were two more evolutionary trends that coincided with the increasingly more tightly coiled shells: The size of the embryonic shells shrank increasingly over time – the hatchlings became smaller and smaller. In parallel, the shell size of fully grown animals increased and, on the whole, the animals became increasingly bigger. Based on this, the researchers deduced that the number of offspring in ammonoids rocketed during the Devonian Period. This is confirmed by discoveries of substantial clusters of fossilized embryonic shells at the end of the Devonian Period and more recent deposits.

“The large number of offspring could have been the key to the rapid proliferation of the ammonoids in the aftermath of each mass extinction,” De Baets suspects. His hypothesis is supported by the fact that precisely the groups with smaller, loosely coiled embryonic shells and proportionately fewer offspring died out in certain Devonian extinction events. Nevertheless, the once successful reproductive strategy of many offspring appears to have turned against them at the end of the Cretaceous Period: The ammonoids died out. Only nautiloids have survived until today: They are characterized by large young and a small number of offspring. Exactly how this circumstance had a positive impact upon the survival of the nautiloids is unknown. All that is clear, according to De Baets, is that nautiloids are extremely vulnerable with their reproductive strategy nowadays in view of overfishing.

Further reading:
Kenneth De Baets, Christian Klug, Dieter Korn, Neil H. Landmann. Early evolutionary trends in ammonoid embryonic development. Evolution, International Journal of Organic Evolution. February 14, 2012. doi: 10.1111/j.1558-5646.2011.01567.x
Contact:
Dr. Kenneth de Baets
Paleontological Institute and Museum
University of Zurich
Tel.: +41 44 634 23 47
Email: kenneth.debaeats@pim.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>