Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First global antineutrino emission map highlights Earth's energy budget

01.09.2015

Tiny particles reveal information about Earth's geologic past and human-made radioactivity

The neutrino and its antimatter cousin, the antineutrino, are the tiniest subatomic particles known to science. These particles are byproducts of nuclear reactions within stars (including our sun), supernovae, black holes and human-made nuclear reactors. They also result from radioactive decay processes deep within the Earth, where radioactive heat and the heat left over from the planet's formation fuels plate tectonics, volcanoes and Earth's magnetic field.


This is the first-ever global map of antineutrino flux, which accounts for natural and human-made sources of antineutrinos, with the latter making up less than 1 percent of the total flux.

Credit: National Geospatial-Intelligence Agency/AGM2015

Now, a team of geologists and physicists has generated the world's first global map of antineutrino emissions. The map, published online in the journal Scientific Reports on September 1, 2015, provides an important baseline image of the energy budget of Earth's interior and could help scientists monitor new and existing human-made sources of radiation. The study was led by the National Geospatial-Intelligence Agency with contributions from researchers at the University of Maryland, the University of Hawaii, Hawaii Pacific University and Ultralytics, LLC.

"The interior of Earth is quite difficult to see, even with modern technology. Locating the activity of antineutrinos allows us to create images that our predecessors had only dreamed of," said William McDonough, professor of geology at UMD and a co-author of the study. "This map should prove particularly useful for future studies of processes within the lower crust and mantle."

Neutrinos are notoriously difficult to study; their tiny size and lack of electrical charge enables them to pass straight through matter without reacting. At any given moment, trillions of neutrinos are passing through every structure and living thing on Earth. Luckily, antineutrinos are slightly easier to detect, through a process known as inverse beta decay. Spotting these reactions requires a huge detector the size of a small office building, housed about a mile underground to shield it from cosmic rays that could yield false positive results.

In the current study, the team analyzed data collected from two such detectors--one in Italy and one in Japan--to generate a picture of antineutrino emissions from natural sources deep within Earth. They combined this with data collected by the International Atomic Energy Agency (IAEA) on more than 400 operational nuclear reactors. In total, antineutrinos from these human-made sources accounted for less than 1 percent of the total detected.

"Keeping tabs on nuclear reactors is important for international safety and security. But as a geologist, I'm particularly excited for the potential to learn more about Earth's interior," McDonough said. "This project will allow us to access basic information about the planet's fuel budget across geologic time scales, and might yet reveal new and exciting details on the structure of the deep Earth."

The team plans to make periodic updates to the global antineutrino map in the future, with the help of improved models of Earth's interior and enhanced antineutrino detection technology. Updates to the map will also reflect the construction and decommission of nuclear reactors as appropriate. All told, the maps will provide an up-to-date picture of Earth's overall radioactivity.

"Antineutrinos are only one particle produced by Earth's natural radiation," explained Shawn Usman, R&D Scientist at the National Geospatial-Intelligence Agency and lead author of the study. "The National Geospatial-Intelligence Agency is working with UMD to develop additional radiation maps to characterize the Earth's naturally-occurring gamma and neutron radiation."

###

This research was supported by the National Geospatial-Intelligence Agency, the National Science Foundation (Award Nos. EAR 1068097 and EAR 1067983), and the U.S. Department of Energy. The content of this article does not necessarily reflect the views of these organizations.

The research paper, "AGM2015: Antineutrino Global Map 2015," Shawn Usman, Glenn Jocher, Stephen Dye, William McDonough and John Learned, was published online September 1, 2015 in the journal Scientific Reports.

Media Relations Contact: Matthew Wright, 301-405-9267, mewright@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright
mewright@umd.edu
301-405-9267

 @UMDRightNow

http://www.newsdesk.umd.edu/ 

Matthew Wright | EurekAlert!

Further reports about: EAR EMISSIONS Earth antineutrinos electrical charge nuclear reactors particles structure

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>