Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovered: World’s Largest Tsunami Debris

25.09.2008
A line of massive boulders on the western shore of Tonga may be evidence of the most powerful volcano-triggered tsunami found to date.

Up to 9 meters (30 feet) high and weighing up to 1.6 million kilograms (3.5 million pounds), the seven coral boulders are located 100 to 400 meters (300 to 1,300 feet) from the coast. The house-sized boulders were likely flung ashore by a wave rivaling the 1883 Krakatau tsunami, which is estimated to have towered 35 meters (115 feet) high.

“These could be the largest boulders displaced by a tsunami, worldwide,” says Matthew Hornbach of the University of Texas Institute for Geophysics. “Krakatau’s tsunami was probably not a one-off event.”

Hornbach and his colleagues will discuss these findings on Sunday, 5 October 2008, at the Joint Annual Meeting of the Geological Society of America (GSA), Soil Science Society of America (SSSA), American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Gulf Coast Association of Geological Societies (GCAGS), in Houston, Texas, USA.

Called erratic boulders, these giant coral rocks did not form at their present location on Tongatapu, Tonga’s main island. Because the island is flat, the boulders could not have rolled downhill from elsewhere. The boulders are made of the same reef material found just offshore, which is quite distinct from the island’s volcanic soil. In fact, satellite photos show a clear break in the reef opposite one of the biggest boulders. And some of the boulders’ coral animals are oriented upside down or sideways instead of toward the sun, as they are on the reef.

Hornbach says the Tongatapu boulders may have reached dry land within the past few thousand years. Though their corals formed roughly 122,000 years ago, they are capped by a sparse layer of soil. And the thick volcanic soils that cover most of western Tongatapu are quite thin near the boulders. This suggests the area was scoured clean by waves in the recent past. Finally, there is no limestone pedestal at the base of the boulders, which should have formed as rain dissolved the coral if the boulders were much older.

Many tsunamis, like the one that struck the Indian Ocean in 2004, are caused by earthquakes. But the boulders’ location makes an underwater eruption or submarine slide a more likely culprit. A chain of sunken volcanoes lies just 30 kilometers (20 miles) west of Tongatapu. An explosion or the collapse of the side of a volcano such as that seen at the famous Krakatau eruption in 1883 could trigger a tremendous tsunami.

Another possibility is that a storm surge could have brought the boulders ashore. But that scenario isn’t likely. No storms on record have moved rocks this big. Another possibility is that a monster undersea landslide caused the tsunami. But Hornbach’s analyses of adjacent seafloor topography point to a volcanic flank collapse as the most probable source of such a wave.

“We think studying erratic boulders is one way of getting better statistics on mega-tsunamis,” Hornbach says. “There are a lot of places that have similar underwater volcanoes and people haven’t paid much attention to the threat.” The researchers have already received reports of more erratic boulders from islands around the Pacific. Future study could indicate how frequently these monster waves occur and which areas are at risk for future tsunamis.

The boulders are such an unusual part of the Tongan landscape that tales of their origins appear in local folklore. According to one legend, the god Maui hurled the boulders ashore in an attempt to kill a giant man-eating fowl.

And though many other Pacific islanders follow the custom of heading uphill after earthquakes, Tongans have no such teachings. Such lore may be useless for near-shore volcanically-generated tsunamis, which arrive too quickly for people to evacuate. Instead, most of Tongatapu’s settlements are huddled together on the northern side of the island—away from the brunt of the tsunami threat.

**WHEN & WHERE**

Sunday, 5 October 2008, 8:00 AM-4:45 PM (authors scheduled from 3:00-4:45 PM)
View abstract, Paper 149-8: “Unraveling the Source of Large Erratic Boulders on Tonga: Implications for Geohazards and Mega-Tsunamis” at
http://gsa.confex.com/gsa/2008AM/finalprogram/abstract_149849.htm
George R. Brown Convention Center: Exhibit Hall E (poster, booth 202)
**CONTACT INFORMATION**
For on-site assistance during the 2008 Joint Annual Meeting, 5-9 October, contact Christa Stratton or Sara Uttech in the Newsroom, George R. Brown Convention Center, Room 350B, +1-713-853-8329.
After the meeting, contact:
Matthew Hornbach, Jackson School of Geoscience
The University of Texas Institute for Geophysics, Austin, Texas
Phone: +1-512-636-5030 (cell)
Email: matth@ig.utexas.edu

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org
http://www.acsmeetings.org

More articles from Earth Sciences:

nachricht Climate change: In their old age, trees still accumulate large quantities of carbon
17.08.2017 | Universität Hamburg

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>