Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovered: World’s Largest Tsunami Debris

25.09.2008
A line of massive boulders on the western shore of Tonga may be evidence of the most powerful volcano-triggered tsunami found to date.

Up to 9 meters (30 feet) high and weighing up to 1.6 million kilograms (3.5 million pounds), the seven coral boulders are located 100 to 400 meters (300 to 1,300 feet) from the coast. The house-sized boulders were likely flung ashore by a wave rivaling the 1883 Krakatau tsunami, which is estimated to have towered 35 meters (115 feet) high.

“These could be the largest boulders displaced by a tsunami, worldwide,” says Matthew Hornbach of the University of Texas Institute for Geophysics. “Krakatau’s tsunami was probably not a one-off event.”

Hornbach and his colleagues will discuss these findings on Sunday, 5 October 2008, at the Joint Annual Meeting of the Geological Society of America (GSA), Soil Science Society of America (SSSA), American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Gulf Coast Association of Geological Societies (GCAGS), in Houston, Texas, USA.

Called erratic boulders, these giant coral rocks did not form at their present location on Tongatapu, Tonga’s main island. Because the island is flat, the boulders could not have rolled downhill from elsewhere. The boulders are made of the same reef material found just offshore, which is quite distinct from the island’s volcanic soil. In fact, satellite photos show a clear break in the reef opposite one of the biggest boulders. And some of the boulders’ coral animals are oriented upside down or sideways instead of toward the sun, as they are on the reef.

Hornbach says the Tongatapu boulders may have reached dry land within the past few thousand years. Though their corals formed roughly 122,000 years ago, they are capped by a sparse layer of soil. And the thick volcanic soils that cover most of western Tongatapu are quite thin near the boulders. This suggests the area was scoured clean by waves in the recent past. Finally, there is no limestone pedestal at the base of the boulders, which should have formed as rain dissolved the coral if the boulders were much older.

Many tsunamis, like the one that struck the Indian Ocean in 2004, are caused by earthquakes. But the boulders’ location makes an underwater eruption or submarine slide a more likely culprit. A chain of sunken volcanoes lies just 30 kilometers (20 miles) west of Tongatapu. An explosion or the collapse of the side of a volcano such as that seen at the famous Krakatau eruption in 1883 could trigger a tremendous tsunami.

Another possibility is that a storm surge could have brought the boulders ashore. But that scenario isn’t likely. No storms on record have moved rocks this big. Another possibility is that a monster undersea landslide caused the tsunami. But Hornbach’s analyses of adjacent seafloor topography point to a volcanic flank collapse as the most probable source of such a wave.

“We think studying erratic boulders is one way of getting better statistics on mega-tsunamis,” Hornbach says. “There are a lot of places that have similar underwater volcanoes and people haven’t paid much attention to the threat.” The researchers have already received reports of more erratic boulders from islands around the Pacific. Future study could indicate how frequently these monster waves occur and which areas are at risk for future tsunamis.

The boulders are such an unusual part of the Tongan landscape that tales of their origins appear in local folklore. According to one legend, the god Maui hurled the boulders ashore in an attempt to kill a giant man-eating fowl.

And though many other Pacific islanders follow the custom of heading uphill after earthquakes, Tongans have no such teachings. Such lore may be useless for near-shore volcanically-generated tsunamis, which arrive too quickly for people to evacuate. Instead, most of Tongatapu’s settlements are huddled together on the northern side of the island—away from the brunt of the tsunami threat.

**WHEN & WHERE**

Sunday, 5 October 2008, 8:00 AM-4:45 PM (authors scheduled from 3:00-4:45 PM)
View abstract, Paper 149-8: “Unraveling the Source of Large Erratic Boulders on Tonga: Implications for Geohazards and Mega-Tsunamis” at
http://gsa.confex.com/gsa/2008AM/finalprogram/abstract_149849.htm
George R. Brown Convention Center: Exhibit Hall E (poster, booth 202)
**CONTACT INFORMATION**
For on-site assistance during the 2008 Joint Annual Meeting, 5-9 October, contact Christa Stratton or Sara Uttech in the Newsroom, George R. Brown Convention Center, Room 350B, +1-713-853-8329.
After the meeting, contact:
Matthew Hornbach, Jackson School of Geoscience
The University of Texas Institute for Geophysics, Austin, Texas
Phone: +1-512-636-5030 (cell)
Email: matth@ig.utexas.edu

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org
http://www.acsmeetings.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>