Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do Dinosaur Skeletons look so Weird?

16.02.2012
Many fossilized dinosaurs have been found in a twisted posture. Scientists have long interpreted this as a sign of death spasms. Two researchers from Basel and Mainz now come to the conclusion that this bizarre deformations occurred only during the decomposition of dead dinosaurs.

More or less complete and articulated skeletons of dinosaurs with a long neck and tail often exhibit a body posture in which the head and neck are recurved over the back of the animal. This posture, also known from Archaeopteryx, has been fascinating paleontologists for more than 150 years. It was called "bicycle pose" when talking with a wink, or "opisthotonic posture" in a more oppressive way of speaking.


A fossil of the Compsognathus longipes from the "Solnhofen Archipelago" shows the twisted posture often seen in dinosaur remains.
© G. Janßen, O. Rauhut, Bayerische Staatssammlung für Paläontologie und Geologie

The latter alludes to an accessory symptom of tetanus, well known in human and veterinarian medicine. Usually, an "opisthotonic posture" like that is the result of vitamin deficiency, poisoning or damage to the cerebellum.

Basically, the cerebellum is a brain region that controls fine muscle movement, which includes the body's antigravity muscles that keep the head and tail upright. If the cerebellum ceases to function, the antigravity muscles will clench at full force, tipping the head and tail back, and contracting the limbs.

A syndrome like that as a petrified expression of death throes was discussed for the first time about 100 years ago for some vertebrate fossils, but the acceptance of this interpretation declined during the following decades. In 2007, this "opisthotonus hypothesis" was newly posted by a veterinarian and a palaeontologist. This study, generously planned, received much attention in the public and the scientific community.

Now, five years later, two scientists from Switzerland and Germany have re-evaluated the revitalized "opisthotonus hypothesis" and examined one of its icons, the famous bipedal dinosaur Compsognathus longipes from the "Solnhofen Archipelago" (Germany). It is widely acknowledged that this 150-millions-years-old land-living dinosaur was embedded in a watery grave of a tropical lagoon.

"In our opinion, the most critical point in the newly discussed scenario of the preservation of an opisthotonic posture in a fossil is the requirement that terrestrial vertebrates must have been embedded immediately after death without substantial transport. But consigning a carcass from land to sea and the following need of sinking through the water column for only a few decimetres or meters is nothing else" says sedimentologist Achim Reisdorf from University of Basel's Institute of Geology and Paleontology.

Biomechanics in Watery Graves
Convinced that the back arching was generated, not by death throes, but by postmortem alterations of a decaying carcass, the researchers made experiments with plucked chicken necks and thoraxes, immersed in water. Submersed in water, the necks spontaneously arched backwards for more than 90°. Ongoing decay for some months even increased the degree of the pose. Thorough preparation and dissection combined with testing revealed that a special ligament connecting the vertebrae at their upper side was responsible for the recurved necks in the chickens. This ligament, the so-called Ligamentum elasticum, is pre-stressed in living chickens, but also in dead ones.

"Veterinarians may often have to do with sick and dying animals, where they see the opisthotonic posture in many cases. Vertebrate palaeontologists, however, who want to infer the environment in which the animals perished and finally were embedded have to elucidate postmortem processes and biomechanical constraints too" says palaeontologist Michael Wuttke from the Section of Earth History in the General Department for the Conservation of Cultural History Rhineland Palatinate in Mainz (Germany).

"A strong Ligamentum elasticum was essential for all long necked dinosaurs with a long tail. The preloaded ligament helped them saving energy in their terrestrial mode of life. Following their death, at which they were immersed in water, the stored energy along the vertebra was strong enough to arch back the spine, increasingly so as more and more muscles and other soft parts were decaying" conclude the researchers. "It is a special highlight that, in the Compsognathus specimen, these gradual steps of recurvature can be substantiated, too. Therefore, biomechanics is ruling the postmortem weird posture of a carcass in a watery grave, not death throes".

Contact
• Achim G. Reisdorf, Universität Basel, Departement Umweltwissenschaften, Geologisch-Paläontologisches Institut, Bernoullistrasse 32, 4056 Basel, Schweiz. Tel. +41 (0)61 267 36 11, E-Mail: achim.reisdorf@unibas.ch

• Dr. Michael Wuttke, Generaldirektion Kulturelles Erbe Rheinland-Pfalz, Direktion Landesarchäologie, Referat Erdgeschichte, Große Langgasse 29, 55116 Mainz, Deutschland. Tel. +49 (0)6131 201 64 00, E-Mail: Michael.Wuttke@gdke.rlp.de

Publication
Achim G. Reisdorf and Michael Wuttke (2012)
Re-evaluating Moodie's Opisthotonic-Posture Hypothesis in fossil vertebrates. Part I: Reptiles – The taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany)

Palaeobiodiversity and Palaeoenvironments 92(1), published online 8 February 2012 | doi: 10.1007/s12549-011-0068-y

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch
http://www.springerlink.com/content/311101262274k114/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>