Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do Dinosaur Skeletons look so Weird?

16.02.2012
Many fossilized dinosaurs have been found in a twisted posture. Scientists have long interpreted this as a sign of death spasms. Two researchers from Basel and Mainz now come to the conclusion that this bizarre deformations occurred only during the decomposition of dead dinosaurs.

More or less complete and articulated skeletons of dinosaurs with a long neck and tail often exhibit a body posture in which the head and neck are recurved over the back of the animal. This posture, also known from Archaeopteryx, has been fascinating paleontologists for more than 150 years. It was called "bicycle pose" when talking with a wink, or "opisthotonic posture" in a more oppressive way of speaking.


A fossil of the Compsognathus longipes from the "Solnhofen Archipelago" shows the twisted posture often seen in dinosaur remains.
© G. Janßen, O. Rauhut, Bayerische Staatssammlung für Paläontologie und Geologie

The latter alludes to an accessory symptom of tetanus, well known in human and veterinarian medicine. Usually, an "opisthotonic posture" like that is the result of vitamin deficiency, poisoning or damage to the cerebellum.

Basically, the cerebellum is a brain region that controls fine muscle movement, which includes the body's antigravity muscles that keep the head and tail upright. If the cerebellum ceases to function, the antigravity muscles will clench at full force, tipping the head and tail back, and contracting the limbs.

A syndrome like that as a petrified expression of death throes was discussed for the first time about 100 years ago for some vertebrate fossils, but the acceptance of this interpretation declined during the following decades. In 2007, this "opisthotonus hypothesis" was newly posted by a veterinarian and a palaeontologist. This study, generously planned, received much attention in the public and the scientific community.

Now, five years later, two scientists from Switzerland and Germany have re-evaluated the revitalized "opisthotonus hypothesis" and examined one of its icons, the famous bipedal dinosaur Compsognathus longipes from the "Solnhofen Archipelago" (Germany). It is widely acknowledged that this 150-millions-years-old land-living dinosaur was embedded in a watery grave of a tropical lagoon.

"In our opinion, the most critical point in the newly discussed scenario of the preservation of an opisthotonic posture in a fossil is the requirement that terrestrial vertebrates must have been embedded immediately after death without substantial transport. But consigning a carcass from land to sea and the following need of sinking through the water column for only a few decimetres or meters is nothing else" says sedimentologist Achim Reisdorf from University of Basel's Institute of Geology and Paleontology.

Biomechanics in Watery Graves
Convinced that the back arching was generated, not by death throes, but by postmortem alterations of a decaying carcass, the researchers made experiments with plucked chicken necks and thoraxes, immersed in water. Submersed in water, the necks spontaneously arched backwards for more than 90°. Ongoing decay for some months even increased the degree of the pose. Thorough preparation and dissection combined with testing revealed that a special ligament connecting the vertebrae at their upper side was responsible for the recurved necks in the chickens. This ligament, the so-called Ligamentum elasticum, is pre-stressed in living chickens, but also in dead ones.

"Veterinarians may often have to do with sick and dying animals, where they see the opisthotonic posture in many cases. Vertebrate palaeontologists, however, who want to infer the environment in which the animals perished and finally were embedded have to elucidate postmortem processes and biomechanical constraints too" says palaeontologist Michael Wuttke from the Section of Earth History in the General Department for the Conservation of Cultural History Rhineland Palatinate in Mainz (Germany).

"A strong Ligamentum elasticum was essential for all long necked dinosaurs with a long tail. The preloaded ligament helped them saving energy in their terrestrial mode of life. Following their death, at which they were immersed in water, the stored energy along the vertebra was strong enough to arch back the spine, increasingly so as more and more muscles and other soft parts were decaying" conclude the researchers. "It is a special highlight that, in the Compsognathus specimen, these gradual steps of recurvature can be substantiated, too. Therefore, biomechanics is ruling the postmortem weird posture of a carcass in a watery grave, not death throes".

Contact
• Achim G. Reisdorf, Universität Basel, Departement Umweltwissenschaften, Geologisch-Paläontologisches Institut, Bernoullistrasse 32, 4056 Basel, Schweiz. Tel. +41 (0)61 267 36 11, E-Mail: achim.reisdorf@unibas.ch

• Dr. Michael Wuttke, Generaldirektion Kulturelles Erbe Rheinland-Pfalz, Direktion Landesarchäologie, Referat Erdgeschichte, Große Langgasse 29, 55116 Mainz, Deutschland. Tel. +49 (0)6131 201 64 00, E-Mail: Michael.Wuttke@gdke.rlp.de

Publication
Achim G. Reisdorf and Michael Wuttke (2012)
Re-evaluating Moodie's Opisthotonic-Posture Hypothesis in fossil vertebrates. Part I: Reptiles – The taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany)

Palaeobiodiversity and Palaeoenvironments 92(1), published online 8 February 2012 | doi: 10.1007/s12549-011-0068-y

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch
http://www.springerlink.com/content/311101262274k114/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>