Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Each degree of global warming might ultimately raise global sea levels by more than 2 meters

16.07.2013
Greenhouse gases emitted today will cause sea level to rise for centuries to come.

Each degree of global warming is likely to raise sea level by more than 2 meters in the future, a study now published in the Proceedings of the National Academy of Sciences shows.

While thermal expansion of the ocean and melting mountain glaciers are the most important factors causing sea-level change today, the Greenland and Antarctic ice sheets will be the dominant contributors within the next two millennia, according to the findings. Half of that rise might come from ice-loss in Antarctica which is currently contributing less than 10 percent to global sea-level rise.

“CO2, once emitted by burning fossil fuels, stays an awful long time in the atmosphere,” says Anders Levermann, lead author of the study and research domain co-chair at the Potsdam Institute for Climate Impact Research. “Consequently, the warming it causes also persists.” The oceans and ice sheets are slow in responding, simply because of their enormous mass, which is why observed sea-level rise is now measured in millimeters per year. “The problem is: once heated out of balance, they simply don’t stop,” says Levermann. “We’re confident that our estimate is robust because of the combination of physics and data that we use.”

The study is the first to combine evidence from early Earth’s climate history with comprehensive computer simulations using physical models of all four major contributors to long-term global sea-level rise. During the 20th century, sea level rose by about 0.2 meters, and it is projected to rise by significantly less than two meters by 2100 even for the strongest scenarios considered. At the same time, past climate records, which average sea-level and temperature changes over a long time, suggest much higher sea levels during periods of Earth history that were warmer than present.

For the study now published, the international team of scientists used data from sediments from the bottom of the sea and ancient raised shorelines found on various coastlines around the world. All the models are based on fundamental physical laws. “The Antarctic computer simulations were able to simulate the past five million years of ice history, and the other two ice models were directly calibrated against observational data – which in combination makes the scientists confident that these models are correctly estimating the future evolution of long-term sea-level rise,” says Peter Clark, a paleo-climatologist at Oregon State University and co-author on the study. While it remains a challenge to simulate rapid ice-loss from Greenland and Antarctica, the models are able to capture ice loss that occurs on long time scales where a lot of the small rapid motion averages out.

If global mean temperature rises by 4 degrees compared to pre-industrial times, which in a business-as-usual scenario is projected to happen within less than a century, the Antarctic ice sheet will contribute about 50 percent of sea-level rise over the next two millennia. Greenland will add another 25 percent to the total sea-level rise, while the thermal expansion of the oceans’ water, currently the largest component of sea-level rise, will contribute about 20 percent, and the contribution from mountain glaciers will decline to less than 5 percent, mostly because many of them will shrink to a minimum.

“Continuous sea-level rise is something we cannot avoid unless global temperatures go down again,” concludes Levermann. “Thus we can be absolutely certain that we need to adapt. Sea-level rise might be slow on time scales on which we elect governments, but it is inevitable and therefore highly relevant for almost everything we build along our coastlines, for many generations to come.”

Article: Levermann, A., Clark, P., Marzeion, B., Milne, G., Pollard, D., Radic, V., Robinson, A. (2013): The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences (early online edition) [DOI: 10.1073/pnas.1219414110 ]

Weblink to the article once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1219414110

Weblink to the article in open access once it is published: http://www.pnas.org/content/early/recent

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1219414110
(Weblink to the article once it is published)
http://www.pnas.org/content/early/recent
(Weblink to the article in open access once it is published)

Sarah Messina | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>