Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Each degree of global warming might ultimately raise global sea levels by more than 2 meters

16.07.2013
Greenhouse gases emitted today will cause sea level to rise for centuries to come.

Each degree of global warming is likely to raise sea level by more than 2 meters in the future, a study now published in the Proceedings of the National Academy of Sciences shows.

While thermal expansion of the ocean and melting mountain glaciers are the most important factors causing sea-level change today, the Greenland and Antarctic ice sheets will be the dominant contributors within the next two millennia, according to the findings. Half of that rise might come from ice-loss in Antarctica which is currently contributing less than 10 percent to global sea-level rise.

“CO2, once emitted by burning fossil fuels, stays an awful long time in the atmosphere,” says Anders Levermann, lead author of the study and research domain co-chair at the Potsdam Institute for Climate Impact Research. “Consequently, the warming it causes also persists.” The oceans and ice sheets are slow in responding, simply because of their enormous mass, which is why observed sea-level rise is now measured in millimeters per year. “The problem is: once heated out of balance, they simply don’t stop,” says Levermann. “We’re confident that our estimate is robust because of the combination of physics and data that we use.”

The study is the first to combine evidence from early Earth’s climate history with comprehensive computer simulations using physical models of all four major contributors to long-term global sea-level rise. During the 20th century, sea level rose by about 0.2 meters, and it is projected to rise by significantly less than two meters by 2100 even for the strongest scenarios considered. At the same time, past climate records, which average sea-level and temperature changes over a long time, suggest much higher sea levels during periods of Earth history that were warmer than present.

For the study now published, the international team of scientists used data from sediments from the bottom of the sea and ancient raised shorelines found on various coastlines around the world. All the models are based on fundamental physical laws. “The Antarctic computer simulations were able to simulate the past five million years of ice history, and the other two ice models were directly calibrated against observational data – which in combination makes the scientists confident that these models are correctly estimating the future evolution of long-term sea-level rise,” says Peter Clark, a paleo-climatologist at Oregon State University and co-author on the study. While it remains a challenge to simulate rapid ice-loss from Greenland and Antarctica, the models are able to capture ice loss that occurs on long time scales where a lot of the small rapid motion averages out.

If global mean temperature rises by 4 degrees compared to pre-industrial times, which in a business-as-usual scenario is projected to happen within less than a century, the Antarctic ice sheet will contribute about 50 percent of sea-level rise over the next two millennia. Greenland will add another 25 percent to the total sea-level rise, while the thermal expansion of the oceans’ water, currently the largest component of sea-level rise, will contribute about 20 percent, and the contribution from mountain glaciers will decline to less than 5 percent, mostly because many of them will shrink to a minimum.

“Continuous sea-level rise is something we cannot avoid unless global temperatures go down again,” concludes Levermann. “Thus we can be absolutely certain that we need to adapt. Sea-level rise might be slow on time scales on which we elect governments, but it is inevitable and therefore highly relevant for almost everything we build along our coastlines, for many generations to come.”

Article: Levermann, A., Clark, P., Marzeion, B., Milne, G., Pollard, D., Radic, V., Robinson, A. (2013): The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences (early online edition) [DOI: 10.1073/pnas.1219414110 ]

Weblink to the article once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1219414110

Weblink to the article in open access once it is published: http://www.pnas.org/content/early/recent

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1219414110
(Weblink to the article once it is published)
http://www.pnas.org/content/early/recent
(Weblink to the article in open access once it is published)

Sarah Messina | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>