Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep sea expedition sets sail

12.11.2008
Setting sail on the Pacific, a University of Delaware-led research team has embarked on an extreme adventure that will find several of its members plunging deep into the sea to study hydrothermal vents on the ocean floor.

The team, which will be conducting research in environments that include scalding heat, high pressure, toxic chemicals and total darkness, is part of the National Science Foundation-funded "Extreme 2008: A Deep-Sea Adventure."

The scientists are being joined by students from around the world on dry land who have signed up for an exciting virtual field trip. More than 20,000 students from 350 schools in the United States, Aruba, Australia, Canada, Costa Rica, Great Britain and New Zealand are participating.

The expedition, led by Craig Cary, professor of marine biosciences in the University of Delaware's College of Marine and Earth Studies, left Monday, Nov. 10, aboard the research ship Atlantis from a port in Manzanillo, Mexico, with an expected return date of Dec. 1. For those interested in following the scientists, they will blog regularly about the voyage at the Extreme 2008 Web site [http://www.expeditions.udel.edu/extreme08].

Team members – researchers and graduate students – are from the University of Delaware, the University of Colorado, University of North Carolina, University of Southern California, J. Craig Venter Institute, Universidad Nacional Autónoma de México and the University of Waikato, New Zealand.

The team is heading to destinations at two hydrothermal hot spots: Guaymas Basin in the Gulf of California and a group of vents in the eastern Pacific Ocean about nine degrees north of the equator.

Once above the vents, the researchers will take the submersible Alvin down from one to nearly two miles below the surface. Built to withstand crushing pressures and to pierce the utter blackness of the deep, Alvin will let the scientists observe life around the steaming vents and collect samples for analysis. Both Atlantis and Alvin are owned by the U.S. Navy and operated by the Woods Hole Oceanographic Institution.

The scientists' focus will be marine viruses and other tiny life called protists. These organisms prey on bacteria, the primary food for vent dwellers ranging from ghost-white vent crabs to bizarre-looking tubeworms.

"For many years, the vents have been explored with little to no attention to viruses and protists," Cary says. "Yet because these organisms eat bacteria, they have the most dramatic effect on the bacterial communities that support the vent system. Our research programs are among the first to focus on these remarkable scavengers."

Eric Wommack, an associate professor with joint appointments in both the College of Agriculture and Natural Resources and the College of Marine and Earth Studies, will join Cary in leading the UD contingent.

Wommack, who is based at the Delaware Biotechnology Institute, is an expert on marine viruses and will be deploying specialized equipment to capture them for analysis in the shipboard lab.

Wommack says hydrothermal vents, although characterized by caustic chemistry, hot temperatures and high pressure, are oases of life in the deep sea. The vents provide an ecosystem for ancient and unusual microbes that are capable of extracting energy from volcanic rather than solar energy, and are home to viruses.

"As a group, viruses are the most abundant biological entities on Earth and contain its largest reservoir of unknown genes," Wommack says. "We know that bacteria at the deep-sea hydrothermal vents are intimately associated with relatively abundant populations of viruses. Our goal is to explore the wilderness of viral genes existing at the vents."

David Caron, professor of biological sciences in the Wrigley Institute for Environmental Studies at the University of Southern California, will be studying protozoa, a class of protists that feed on other organisms and that may form a crucial bridge between bacteria and animal life.

If Caron is correct, the samples from the deep will show that protozoa feed on bacteria or on the products of bacterial activity and are in turn eaten by larger life forms. The most surprising thing about the theory may be the lack of evidence for it. While other studies have found a protozoan-animal link in surface waters, the analogous middle step in the deep ocean has been overlooked.

"Protozoa are everywhere and they're in virtually every environment. They play this intermediate food web role in a number of these environments, and there's no reason to believe that they aren't doing the same thing in the vents. It simply hasn't been looked at to any degree," Caron said.

As the scientists work at sea, they will be connected to students via an interactive Web site, where blogs, dive logs, video clips, photos and interviews will be posted daily. Students also will be able to write to the scientists, design experiments and participate in a virtual science fair.

A capstone experience for selected schools will be a "Phone Call to the Deep," linking classrooms with researchers working live in the submersible Alvin on the seafloor.

Andrea Boyle | EurekAlert!
Further information:
http://www.udel.edu
http://www.expeditions.udel.edu/extreme08

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>