Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data Catches Up with Theory: Ocean Front Is Energetic Contributor to Mixing

15.04.2011
Wind blowing on the ocean is a crucial factor mixing the greenhouse gas carbon dioxide into the ocean depths and keeping it from going back into the atmosphere.

For more than two decades scientists have suspected there’s another – possibly substantial – source of energy for mixing that’s generated in the ocean where cold, heavy water collides with warm, light water. However, there’s never been a way to get enough measurements of such a “front” to prove this – until now.

University of Washington and Stanford University researchers report in the print edition of Science April 15 about turbulence at a front near Japan that is 10 to 20 times more energetic than what the wind could generate.

Without such data, the turbulence and mixing contributed by fronts can’t be reliably accounted for in climate models, according to Eric D’Asaro, oceanographer with the UW Applied Physics Laboratory and School of Oceanography. Climate modelers, for example, need an accurate reading of how rapidly carbon dioxide is mixed into the depths, or interior, of the ocean in order to use the models to predict the effects of climate change, he says. Right now, for instance, the oceans absorb about 30 percent of the carbon dioxide released into the atmosphere.

“Progress in understanding the dynamics of fronts has been hampered by lack of observations,” says Raffaele Ferrari, Massachusetts Institute of Technology professor of oceanography, who is not involved with the paper.

“The research represents a remarkable breakthrough in that it provides possibly the first direct observations of how an ocean front works on scales from kilometers to millimeters,” Ferrari says. He’s the author of a “Perspectives” piece in Science April 15 about the challenges of representing oceanic fronts in climate models.

Thousands of fronts develop in the ocean where bodies of water with different characteristics meet. Typically one is colder and the other warmer: think of river water flowing into the ocean, or ocean currents from the tropics encountering those from the poles. Fronts can be small, stretching only hundreds of yards while others go on for miles; some exist only briefly while others persist for weeks or months; and the path of a front is continually meandering.

The ever-changing position and shape of fronts is what makes them devilish to measure.

“It’s like trying to watch a tadpole grow while it’s being carried downstream in a river,” says Craig Lee, oceanographer with the UW Applied Physics Laboratory and School of Oceanography and a co-author of the paper. “You can’t expect to sit in one place and watch it turn into a frog – you have to follow it wherever it goes.”

D’Asaro, Lee and their colleagues picked the Kuroshio front off Japan for their attempt. The Kuroshio current, second in strength only to the Gulf Stream, carries warm water north from the subtropics and forms a front where it meets cold subpolar water carried south by the Oyashio current.

Although the front is strong and persistent, the scientists had to choose one particular piece, continually track its exact location as it was carried downstream and measure it. Floats developed by D’Asaro, which are programmable and buoyant in a way that they can stick with a moving and undulating body of water, marked the location of the chosen section and relayed acoustic signals so a ship could go to the front and measure what was happening.

At the Kuroshio front, winds blowing along the front combined with the Earth’s rotation create currents that flow across the front pulling cold water over warm. Cold water is heavier than warm water and turbulence is created as the top-heavy waters sort themselves out, creating new, more-temperate layers of warm on top of cold water.

The work involved “a great deal of ingenuity to keep all these tools along a front for a few weeks,” Ferrari says.

What they found at the strong Kuroshio front, D’Asaro says, is likely an extreme example of a process that occurs much more widely in the ocean.

“It’s not just wind at work on the ocean. The enhanced mixing at this front is drawing energy from the entire North Pacific. That’s what’s really new,” D’Asaro says.

It would be useful to measure other fronts, such as those associated with the Gulf Stream and Antarctic circumpolar currents, to further define their role in ocean dynamics and climate models, Lee says.

Along with D’Asaro and Lee, other co-authors are Luc Rainville and Ramsey Harcourt with the UW’s Applied Physics Laboratory, and Leif Thomas with Stanford University. The work was funded by the Office of Naval Research.

For more information:
D'Asaro, 206-685-2982, dasaro@uw.edu
Lee, 206-685-7656, craig@apl.washington.edu
Ferrari, 617-253-1291, rferrari@mit.edu
Suggested websites
Science abstract
http://www.sciencemag.org/content/early/2011/03/09/science.1201515
D’Asaro website
http://opd.apl.washington.edu/~dasaro/HOME/index.html
D’Asaro float technology
http://opd.apl.washington.edu/~dasaro/FloatTech/floats.html
Craig Lee website
http://iop.apl.washington.edu/people.html
Triaxus technology
http://iop.apl.washington.edu/tools.html
UW Applied Physics Laboratory
http://www.apl.washington.edu/
UW School of Oceanography
http://www.ocean.washington.edu/
MIT’s Raffaele Ferrari
http://web.mit.edu/raffaele/www/Home.html
Kuroshio current
http://www.encyclopedia.com/topic/Kuroshio_Current.aspx
UW’s Luc Rainville
http://www.apl.washington.edu/people/profile.php?last=Rainville&first=Luc
UW’s Ramsey Harcourt
http://www.apl.washington.edu/people/profile.php?last=Harcourt&first=Ramsey
Stanford U’s Leif Thomas
http://pangea.stanford.edu/~leift/
Office of Naval Research
http://www.onr.navy.mil/

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>