Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will coral reefs disappear?

22.02.2010
This is the title of an upcoming symposium at the American Association for the Advancement of Science (AAAS) annual conference in San Diego, California. And it's a topic that should not be taken lightly.

NSERC-funded researcher Dr. Simon Donner, an assistant professor in the department of geography at the University of British Columbia, will be talking about the vulnerability of coral reefs to climate change due to higher ocean temperatures.

Dr. Donner studies coral bleaching. Corals get most of their energy from microscopic algae that live in their tissue. These algae are colourful and are what gives corals their vivid hue. When environmental factors go out of the range that corals are used to (such as warming water), the symbiosis between the coral and the algae breaks down and corals effectively expel the algae and turn white. The coral is then deprived of its source of energy, and dies.

Dr. Donner studies the frequency of coral bleaching events, their consequences and the link to unusually warm oceans. He says that mass coral bleaching events were thought to be extremely rare as far back as 30 years ago.

At the AAAS conference he will be talking about the predicted occurrence of bleaching events under different climate scenarios and, according to

Dr. Donner, it doesn't look good.

"Even if we froze emissions today, the planet still has some warming left in it. That's enough to make bleaching dangerously frequent in reefs worldwide," he says.

Given the hundreds of millions of people living in the tropics who depend on coral reefs for food, income, tourism and shoreline protection, the loss of reefs is a serious issue.

"Obviously, there's an aesthetic concern because people see Finding Nemo and they're worried about what's going to happen to the world's coral reefs, but the key thing is that there are hundreds of millions of people who depend on them for their livelihood," says Dr. Donner.

However, the outlook isn't completely bleak. Dr. Donner says that no one is predicting that coral reefs will go extinct; they will continue to survive, but only in certain habitats, such as shaded areas. The reality is a general loss of coral cover and a breakdown of the physical structure of reefs.

In order to see what the future of reefs might be, Dr. Donner is pursuing fieldwork in the central equatorial Pacific, because the islands and reefs in that area are affected by repeated El Nino events. Because of this, they've experienced higher year-to-year temperature variability than other areas on the planet. Dr. Donner is studying the corals in these areas to understand how the reefs are biologically different, and how that has allowed them to persist through warm water events that would kill coral in other areas of the planet.

"It's a natural model for the future," he says.

Contacts:

Simon Donner
1-604-822-6959
Cell : 1-604-561-7284
simon.donner@geog.ubc.ca
Arnet Sheppard, NSERC
1-613-883-3319
arnet.sheppard@nserc-crsng.gc.ca
Dr. Donner's AAAS Presentation
Projected Changes in Coral Cover on Reefs
Sunday, February 21, 2010
1:30 p.m. – 4:30 p.m.
San Diego Convention Center, Room 6D.
Learn more about Dr. Donner's research @ http://www.simondonner.com/index.htm
For a list of other Canadian researchers presenting at this week's AAAS meeting, visit www.nserc-crsng.gc.ca

Simon Donner | EurekAlert!
Further information:
http://www.ubc.ca
http://www.nserc-crsng.gc.ca

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>