Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contrary to Recent Hypothesis, 'Chevrons' Are Not Evidence of Megatsunamis

30.04.2009
Two geologists are debunking the recent notion that 'chevrons,' large U- or V-shaped formations found in some of the world's coastal areas, are evidence of megatsunamis caused by asteroids or comets slamming into the ocean.

A persistent school of thought in recent years has held that so-called "chevrons," large U- or V-shaped formations found in some of the world's coastal areas, are evidence of megatsunamis caused by asteroids or comets slamming into the ocean.

University of Washington geologist and tsunami expert Jody Bourgeois has a simple response: Nonsense.

The term "chevron" was introduced to describe large dunes shaped something like the stripes you might see on a soldier's uniform that are hundreds of meters to a kilometer in size and were originally found in Egypt and the Bahamas.

But the discovery of similar forms in Australia and Madagascar led some scientists to theorize that they were, in fact, deposits left by huge tsunami waves, perhaps 10 times larger than the devastating Indian Ocean tsunami of December 2005.

Such huge waves, they suggest, would result from the giant splash of an asteroid or comet hitting the ocean. They also suggest one such impact occurred 4,800 to 5,000 years ago, and that chevrons in Australia and Madagascar point to its location in the Indian Ocean.

But Bourgeois said the theory just doesn't hold water.

For example, she said, there are numerous chevrons on Madagascar, but many are parallel to the coastline. Models created by Bourgeois' colleague Robert Weiss show that if they were created by tsunamis they should point in the direction the waves were travelling, mostly perpendicular to the shore.

"And if it really was from an impact, you should find evidence on the coast of Africa too, since it is so near," said Bourgeois, a UW professor of Earth and space sciences who has studied earthquakes and tsunamis in various parts of the world.

In a paper in the May issue of Geology, Bourgeois and Weiss, an assistant professor of geology at Texas A&M University, conclude that "the extraordinary claim of 'chevron' genesis by megatsunamis cannot withstand simple but rigorous testing."

The scientists used an online program called Google Earth, made up of satellite images of the Earth's surface, to get close-up looks at chevrons in different locations. Chevrons often are found in coastal areas, but they also are common in semiarid areas inland.

"There are the same forms in the Palouse in eastern Washington state, and those are clearly not from a tsunami," Bourgeois said.

For the research, Weiss created a computer model that generated actual conditions that would occur during a tsunami. The scientists then used the model to examine what would happen if an asteroid or comet hit in the area theorized by the megatsunami proponents. The model showed the wave approach would be at a 90-degree orientation to the chevron deposits. But if the megatsunami interpretation is correct, the chevrons should be parallel to wave approach.

"That's just not the case here. The model shows such a tsunami could not have created these chevrons, unless you have some unimaginable process at work," Bourgeois said.

Asteroids and comets bombarded Earth in the distant past, at times with devastating consequences, such as the impact 65 million years ago that is believed to have sent dinosaurs to their extinction. There have been large impacts since but probably nothing comparable.

Proponents of the megatsunami theory have suggested that the dunes could not have been created by other forces, but Bourgeois believes their interpretation is faulty.

"They claim these are not consistent with the patterns of prevailing winds, but in fact they are consistent with the wind. They are not consistent with what a tsunami would do," she said.

The discovery of marine fossils in some chevron formations seems to support the idea that a wave created the deposit, but Bourgeois discounts that evidence also.

"Marine fossils can get into non-marine deposits. It's not uncommon. You only have to change sea level a little bit or have them wash up on a beach in a storm," she said. "And some marine organisms can be carried by the wind. I am convinced these are largely wind-blown deposits."

She noted that similar deposits have been seen on the Kamchatka Peninsula on Russia's east coast, where she has conducted research for more than a decade.

"Those are made of volcanic ash, and they are not near the coast at all, yet they look very similar to these coastal chevrons," Bourgeois said.

For more information, contact Bourgeois at (206) 685-2443 or bourgeois@ess.washington.edu.

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>