Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contrary to Recent Hypothesis, 'Chevrons' Are Not Evidence of Megatsunamis

30.04.2009
Two geologists are debunking the recent notion that 'chevrons,' large U- or V-shaped formations found in some of the world's coastal areas, are evidence of megatsunamis caused by asteroids or comets slamming into the ocean.

A persistent school of thought in recent years has held that so-called "chevrons," large U- or V-shaped formations found in some of the world's coastal areas, are evidence of megatsunamis caused by asteroids or comets slamming into the ocean.

University of Washington geologist and tsunami expert Jody Bourgeois has a simple response: Nonsense.

The term "chevron" was introduced to describe large dunes shaped something like the stripes you might see on a soldier's uniform that are hundreds of meters to a kilometer in size and were originally found in Egypt and the Bahamas.

But the discovery of similar forms in Australia and Madagascar led some scientists to theorize that they were, in fact, deposits left by huge tsunami waves, perhaps 10 times larger than the devastating Indian Ocean tsunami of December 2005.

Such huge waves, they suggest, would result from the giant splash of an asteroid or comet hitting the ocean. They also suggest one such impact occurred 4,800 to 5,000 years ago, and that chevrons in Australia and Madagascar point to its location in the Indian Ocean.

But Bourgeois said the theory just doesn't hold water.

For example, she said, there are numerous chevrons on Madagascar, but many are parallel to the coastline. Models created by Bourgeois' colleague Robert Weiss show that if they were created by tsunamis they should point in the direction the waves were travelling, mostly perpendicular to the shore.

"And if it really was from an impact, you should find evidence on the coast of Africa too, since it is so near," said Bourgeois, a UW professor of Earth and space sciences who has studied earthquakes and tsunamis in various parts of the world.

In a paper in the May issue of Geology, Bourgeois and Weiss, an assistant professor of geology at Texas A&M University, conclude that "the extraordinary claim of 'chevron' genesis by megatsunamis cannot withstand simple but rigorous testing."

The scientists used an online program called Google Earth, made up of satellite images of the Earth's surface, to get close-up looks at chevrons in different locations. Chevrons often are found in coastal areas, but they also are common in semiarid areas inland.

"There are the same forms in the Palouse in eastern Washington state, and those are clearly not from a tsunami," Bourgeois said.

For the research, Weiss created a computer model that generated actual conditions that would occur during a tsunami. The scientists then used the model to examine what would happen if an asteroid or comet hit in the area theorized by the megatsunami proponents. The model showed the wave approach would be at a 90-degree orientation to the chevron deposits. But if the megatsunami interpretation is correct, the chevrons should be parallel to wave approach.

"That's just not the case here. The model shows such a tsunami could not have created these chevrons, unless you have some unimaginable process at work," Bourgeois said.

Asteroids and comets bombarded Earth in the distant past, at times with devastating consequences, such as the impact 65 million years ago that is believed to have sent dinosaurs to their extinction. There have been large impacts since but probably nothing comparable.

Proponents of the megatsunami theory have suggested that the dunes could not have been created by other forces, but Bourgeois believes their interpretation is faulty.

"They claim these are not consistent with the patterns of prevailing winds, but in fact they are consistent with the wind. They are not consistent with what a tsunami would do," she said.

The discovery of marine fossils in some chevron formations seems to support the idea that a wave created the deposit, but Bourgeois discounts that evidence also.

"Marine fossils can get into non-marine deposits. It's not uncommon. You only have to change sea level a little bit or have them wash up on a beach in a storm," she said. "And some marine organisms can be carried by the wind. I am convinced these are largely wind-blown deposits."

She noted that similar deposits have been seen on the Kamchatka Peninsula on Russia's east coast, where she has conducted research for more than a decade.

"Those are made of volcanic ash, and they are not near the coast at all, yet they look very similar to these coastal chevrons," Bourgeois said.

For more information, contact Bourgeois at (206) 685-2443 or bourgeois@ess.washington.edu.

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>