Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Confirming carbon's climate effects

05.04.2012
Researcher helps paint the fullest picture yet of how increases in CO2 helped end the ice age

Harvard scientists are helping to paint the fullest picture yet of how a handful of factors, particularly world-wide increases in atmospheric carbon dioxide, combined to end the last ice age approximately 20,000 to 10,000 years ago.

As described in a paper published April 5 in Nature, researchers compiled ice and sedimentary core samples collected from dozens of locations around the world, and found evidence that while changes in Earth's orbit may have touched off a warming trend, increases in CO2 played a far more important role in pushing the planet out of the ice age.

"Orbital changes are the pacemaker. They're the trigger, but they don't get you too far," lead author Jeremy Shakun, a visiting postdoctoral fellow in Earth and Planetary Science Shakun, said. "Our study shows that CO2 was a much more important factor, and was really driving worldwide warming during the last deglaciation."

Though scientists have known for many years, based on studies of Antarctic ice cores, that deglaciations over the last million years and spikes in CO2 were connected, establishing a clear cause-and-effect relationship between CO2 and global warming from the geologic record has remained difficult, Shakun said. In fact, when studied closely, the ice-core data indicate that CO2 levels rose after temperatures were already on the increase, a finding that has often been used by global warming skeptics to bolster claims that greenhouse gases do not contribute to climate change.

Many climate scientists have addressed the criticism and shown that the lag between temperature and CO2 increases means that greenhouse gases were an amplifier, rather than trigger, of past climate change, but Shakun and his colleagues saw a larger problem – while CO2 measurements taken from air bubbles in the ice cores reflect levels throughout the global atmosphere, temperatures recorded in the ice only reflect local Antarctic conditions.

To get a more accurate picture of the relationship between global temperature and CO2, they synthesized dozens of core samples – 80 in all – collected from around the world.

"We have ice cores from Greenland, people have cored the sea floor all around the world, they've cored lakes on the continents, and they have worked out temperature histories for all these sites," Shakun said. "Putting all of these records together into a reconstruction of global temperature shows a beautiful correlation with rising CO2 at the end of the ice age. Even more interesting, while CO2 trails Antarctic warming, it actually precedes global temperature change, which is what you would expect if CO2 is causing the warming.

"The previous science clearly said that CO2 had something to do with warming," Shakun added. "It has gone up and down in tandem with the ice ages, so it is clearly involved. If it was an amplifier, the question was how big of an amplifier? Does it explain a lot of climate change, or was it a small piece, and other factors were more important? I think this research really points a strong finger at the idea that CO2 was a major player."

Armed with that evidence, Shakun and colleagues were able to sketch out how a series of factors aligned that eventually led to a worldwide warming trend and the end of the ice age.

Most scientists now believe, Shakun said, that the first domino wasn't an increase in greenhouse gases, but a gradual change in Earth's orbit. That orbital change resulted in more sunlight hitting the northern hemisphere. As the ice sheets over North America and Europe melted, millions of gallons of fresh water flooded into the North Atlantic and disruped the cyclical flow of ocean currents.

"Ocean circulation works like a global conveyor belt," Shakun said. "The reason it's important for climate is because it's moving heat around. If you look at it today, the northern hemisphere is on average, a couple degrees warmer than the south, and that's partly because the ocean is pulling heat northward as it flows across the equator in the Atlantic.

"But if you turn the conveyor belt off, it's going to warm the south because you're no longer stealing that heat away. Warming the southern hemisphere, in turn, shifts the winds and melts back sea ice that had formed a cap, trapping carbon in the deep ocean."

As more and more CO2 enters the atmosphere, Shakun said, the global warming trend continues, "and pretty soon you're headed out of an ice age."

While the research strengthens the link between CO2 and the Ice Ages, Shakun believes it also reinforces the importance of addressing CO2-driven climate change in our own time.

"I don't think this tells us anything fundamentally new about global warming," Shakun said. "Most scientists are not in doubt about the human-enhanced greenhouse effect – there are nearly a dozen strong pieces of evidence that it is affecting global climate. This is just one more log on the fire that confirms it."

Shakun's research was supported by a National Oceanic and Atmospheric Administration Climate and Global Change Fellowship and by the National Science Foundation, and conducted using resources at the Oak Ridge National Laboratory.

Peter Reuell | EurekAlert!
Further information:
http://www.fas.harvard.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>