Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The overall channels of the lightning discharges

07.11.2008
The VHF radio interferometer system was designed by ZHANG GuangShu, et al of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences.

By using this system, a cloud-to-ground lightning flash containing 19 strokes was observed and several new characteristics of lightning have been revealed. The study is reported in volume51, number 5 (May, 2008) of the Science in China (Series D, Earth Sciences).

The system in this study has five antennas that form an array in orthogonal directions, and an interactive graphic analysis procedure is used to remove the fringe ambiguities. The system error, which comes from frequency conversion, is reduced by phase detection through direct high frequency amplifying. By using the system, the whole progression process in time and space of a lightning flash can be continuously reconstructed at microsecond orders. As an example, the overall channel of a normal cloud-to-ground lightning flash that contains 19 strokes was analyzed and presented. It is found that the preliminary breakdown event of the CG flash started from negative charge region and exhibited firstly a downward progression and then an upward propagation. Intense and continuous radiations during stepped leaders became much stronger when the first return stroke began. In contrast, there were less and only discrete radiations during dart leaders. Stepped leader and dart leader may transform to each other depending on the state of the ionization of the path. The progression speed of initial stepped leaders was about 105 ms-1, while that was about 4.1×106 ms-1 and 6.0×106 ms-1 for dart leaders and dart-stepped leaders, respectively. M events produced hook-shaped field changes, accompanied by active burst of radiations at their beginnings. Following these active radiation processes, M events appeared to contact finally into conducting main discharge channels. The mean progression speed of M events was about 7×107ms-1, greater than that of the dart leaders and dart-step leaders. K events and attempted leaders (ATP) were essentially the same as the dart leaders except that they could not reach the ground and initiate return strokes.

Two methods, time of arrival (TOA) technique and interferometric technique, have been used to locate RF radiation events of lightning discharge up to now. TOA technique works better for locating isolated, impulsive radiation events. Since TOA technique has less time resolution, it is impossible to use it to study the whole process of a lightning discharge in detail. Interferometric technique works better for burst of impulses lasting several tens or hundreds of microseconds and can be used to locate the whole process of a lighting discharge in a time resolution of microsecond orders. However, the existence of so-called fringe ambiguities severely limits the measurement precision. ZHANG GuangShu, et al., researchers of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, have been studying the technique of the TOA and interferometer during the past 10 years and have successfully solved many problems of the previous systems.

Now, ZHANG GuangShu, et al. are working to combine various location methods in hope of developing a more powerful tool for lightning study.

Zhang GuangShu | EurekAlert!
Further information:
http://www.lzb.ac.cn

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>