Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath-taking moments in the Black Sea: Periodic hypoxia affects seafloor fauna and carbon turnover

13.02.2017

Periodic oscillations of bottom-water oxygen concentrations can alter benthic communities and carbon storage for decades, reveals a new study published in Science Advances. This is particularly relevant as low oxygen conditions are on the rise in the world’s oceans.

The seafloor plays a key role in the global elemental cycles. Its inhabitants consume and recycle organic matter sinking to the bottom. Usually, only a minor part of that material gets buried in the seafloor. The lion’s share is remineralised by seafloor life – i.e. broken down and fed back to the ecosystem for the production of new biomass. Thus, the fate of this material at the seafloor crucially impacts global carbon and nutrient cycling and, as a consequence, marine productivity and our climate.


Sediment was retrieved with a Multicorer to allow for a detailed analysis of sediment biogeochemistry and its inhabitants along a transect of oxygen concentrations.

R. North, Eawag, Switzerland


Retrieval of cores from the seafloor with the submersible JAGO. Below the black layer that is visible close to the sediment surface the sediment is free of oxygen.

JAGO-Team, GEOMAR Kiel

Temporary shortage, long-term storage

Animals need oxygen to breathe. Hence, declining bottom-water oxygen supply negatively impacts the community composition and activity of marine sediments. To which extent it also determines remineralisation and thus carbon burial rates remained controversial.

Gerdhard Jessen from Max Planck Institute for Marine Microbiology in Bremen, Germany, and an international team of researchers reveal in Science Advances that declining bottom-water oxygen concentrations significantly influence carbon storage in the seafloor for decades. This effect happens earlier then previously thought and over larger areas of seafloor. When oxygen runs short, substantially less organic matter is remineralised and substantially more gets buried. And what gets buried stays buried for a long time.

„The amount of organic matter ending up in the seafloor increases by half when the seafloor is periodically short of oxygen”, says Jessen. „Even tasty and easily available bits, such as freshly deposited algal material, are not consumed.”

The Black Sea as a natural laboratory

Simulating such long-term and complex processes in the lab is hard to do. Therefore, Jessen and his colleagues took research vessel Maria S. Merian to the Black Sea, the largest naturally anoxic water body in the world, within the framework of the EU FP7 project HYPOX.

There, stable stratification results in a natural gradient of bottom-water oxygen concentrations at the outer shelf, ranging from well-oxygenated shallow waters over variable oxygen conditions to anoxic deeper waters below about 160 metres water depth. This provides for close-to-perfect experimental conditions. „We used the Black Sea seafloor as a natural laboratory. It allowed us to investigate what might be coming up to many party of the world’s oceans”, Jessen says.

„Low-oxygen areas in the oceans are on the rise, mainly as a consequence of anthropogenic nutrient inputs and climate change”, explains Antje Boetius, senior author of the study and group leader of the HGF-MPG Research Group for Deep Sea Ecology and Technology. „Thus, it is particularly important to understand and measure what oxygen stress in the oceans means for their inhabitants as well as the global biogeochemical cycles.”

Changing seafloor life

How come that the effects are so drastic if the seafloor runs periodically out of breath? „Oxygen deficiency changes the faunal community of the seafloor “, Boetius elaborates. In particular larger animals, such as worms and mussels, cannot survive without it. These animals rummage through the sediment looking for food and shelter, intermixing oxygen and nutrients for smaller seafloor inhabitants in the process. „The large organisms disappear when oxygen is scarce. Sediment bacteria alone are then responsible for the remineralisation of the organic matter arriving at the seafloor, but they move slowly and take very long to break down complex materials without the help of animals.”

As a result, under hypoxic conditions more organic material is buried and thus removed from the system. Anaerobic microorganisms, gaining their energy without oxygen for example by fermentation or sulphate reduction, take the helm. These also produce toxic sulphide, further slowing down the breakdown of materials.

„The Black Sea can teach us many lessons”, says Boetius, „as it clearly reveals the effects of fluctuating and low oxygen conditions on the ocean ecosystem, causing tremendous changes in the services of the ecosystem to us humans. Investigations as the current one are thus essential in the face of global change, to detect warning signals from the ocean in time.“

Original publication
Gerdhard L. Jessen, Anna Lichtschlag, Alban Ramette, Silvio Pantoja, Pamela E. Rossel, Carsten J. Schubert, Ulrich Struck, Antje Boetius: Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Science Advances 2017. DOI: 10.1126/sciadv.1601897

Participating institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

University of Concepción, Concepción, Chile
ICBM-MPI Bridging Group, University of Oldenburg, Oldenburg, Germany
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany

Please direct your queries to

Dr. Gerdhard Jessen
E-Mail: gjessen(at)mpi-bremen.de or

Prof. Dr. Antje Boetius
Phone: +49 421 2028 860
E-Mail: aboetius(at)mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 947
E-Mail: presse(at)mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de/en/Breathtaking_moments_in_the_Black_Sea.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>