Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assessing the influence of Alaska glaciers is slippery work

30.05.2011
With an estimated 34,000 square miles of ice, an area about the size of Maine, Alaska's multitude of glaciers have a global impact.

Anthony Arendt, an assistant research professor at the University of Alaska Fairbanks Geophysical Institute, has outlined the complexity and influence of Alaska glaciers in this week's issue of the journal Science. In his article, Arendt explains the importance of integrating field observations and more precise glacier simulation models.

"We have used satellites to measure the mass changes of all of Alaska's glaciers, but there are also many glaciers that need to be measured in the field," Arendt said. "We need these field observations to better understand the processes that are controlling glacier changes."

Glacial patterns are difficult to predict — even for current computer models. Alaska glaciers often behave independently of one another. They retreat and surge, and are subject to volcanic and oceanic influences, in addition to changes in precipitation and warming temperatures. Data collected in the field will help refine existing models, so that a more accurate picture of changing sea level can be drawn.

"Alaska glaciers have been losing mass more rapidly since the mid-1990s than they were several decades earlier," Arendt states in the article. "Understanding whether this trend continues will require an integration of observations across disciplines, as well as the development of robust glacier simulation models."

According to Arendt, glaciers and ice caps make up a mere three percent of the ice on our planet, yet they account for about half of the sea level contribution. These dynamic chunks of ice are tremendously influential on future coastlines.

"There are many people living very close to the sea in areas where even a small change in sea level would be devastating," Arendt said. "Developing countries don't have the resources to deal with this change."

To create the best sea level forecasts, Arendt said that scientists need to use field observations to fill data gaps in current models. With thousands of glaciers in Alaska, scientists have much more work to do, he said, noting that the research will ultimately help the global community better adapt to sea level change.

CONTACT: Amy Hartley, Geophysical Institute information officer, 907-474-5823, amy.hartley@gi.alaska.edu

ADDITIONAL CONTACTS: Anthony Arendt, UAF Geophysical Institute research professor, 907-474-7427, or via email at anthony.arendt@gi.alaska.edu. Marmian Grimes, UAF public information officer, at 907-474-7902 or via email at marmian.grimes@alaska.edu.

ON THE WEB: http://www.sciencemag.org/content/332/6033/1044.full?sid=84465a9a-62af-4eb9-96e8-8f7be3b2ea52

Anthony Arendt | EurekAlert!
Further information:
http://www.alaska.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>