Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach allows past data to be used to improve future climate projections

30.11.2012
Climate scientists are still grappling with one of the main questions of modern times: how high will global temperatures rise if the atmospheric concentration of carbon dioxide doubles.
Many researchers are turning to the past because it holds clues to how nature reacted to climate change before the anthropogenic impact. The divergent results of this research, however, have made it difficult to make precise predictions about the impact of increased carbon dioxide on future warming.

An international team of scientists have evaluated previously published estimates and assigned them consistent categories and terminology. This process should assist in limiting the range of estimates and make it easier to compare data from past climate changes and projections about future warming. The group has presented its new method in the current edition of the journal Nature.

The research group summarized, classified and compared data from more than 20 studies to make a potential prognosis about the expected future rise in the world’s temperature. In these palaeoclimate studies climate sensitivity has been reconstructed on the basis of data derived from ice and sediment core. Climate sensitivity is a key parameter in the study of climate change. It describes the rise of the mean temperature of the earth’s surface due to changes in the climate system. Specifically, its value represents the increase in global temperatures calculated by climate models, if the carbon dioxide content in the atmosphere doubles. Here, models were initialised with pre-industrial carbon dioxide concentrations.

The team was then faced with the challenge of comparing the assembled studies. Each study spoke of “climate sensitivity”, but not all took the same factors into account. “We had to elaborate all the different assumptions and uncertainties, such as which studies look exclusively at carbon dioxide and which considered other greenhouse gases such as methane or the effect of reflection, the so called albedo, from ice surfaces. Only then could we compare the data. We also calculated the climate sensitivity data if we only considered greenhouse gases like carbon dioxide or added in albedo”, explained Dr Peter Köhler, one of the article’s main authors and climatologist at the Alfred Wegener Institute for Polar and Marine Research, part of the Helmholtz Association.

The research group was able to use its new method to differentiate ten different kinds of climate sensitivity. In a second phase of the project, they then worked on devising consistent terminology and concrete definitions. The new classification system should prevent future researchers from publishing widely divergent estimates of climate sensitivity based on differing assumptions. “Ideally, it should be clear from the start of a study what kind of climate sensitivity is being addressed. The factors considered by the researchers to be driving temperature change should be clear from the language used. Our terminology offers a conceptual framework to calculate climate sensitivity based on past climate data. We hope that this will improve evaluation of future climate projections”, adds Köhler.

This work represents a significant advance for climatology. It is the first summary of what scientists have been able to reconstruct about climate sensitivity based on data from the past 65 million years and the assumptions that were behind the data. It also demonstrates that the climate forecasts in the IPCC reports agreed with the estimates of how nature has reacted to changes in the climate through the course of the earth’s history.

The research team has not, however, achieved one of its goals. “We had hoped to limit the range of current assumptions about climate sensitivity. In its last report, the IPCC summarised that the global temperature would rise 2.1 to 4.4 degrees C if the atmospheric carbon dioxide level rises to double the pre-industrial values. As it turns out, our climate sensitivity values are currently within this same range” says Dr Köhler.

Further open questions will have to be addressed in order to obtain more precise figures. Scientists know, for example, that climate sensitivity depends on the predominant background climate at the time, i.e. whether climate is in an ice age or a warm age. But exactly how this background climate impacts climate sensitivity still has to be answered. The climatologists behind this study hope that the new conceptual framework will push further research in this direction.

The article is the outcome of a three-day colloquium held last year at the Royal Netherlands Academy of Arts and Sciences in Amsterdam, attended by more than 30 specialists in the field.
Notes for Editors: The original article is entitled “Making sense of palaeoclimate sensitivity” and appeared in the 29 November issue of Nature (doi: 10.1038/nature11574), Vol 491, pages 683-691. For further information, contact either Dr Peter Köhler Tel. +49(0)471 4831-1687 (e-mail: Peter.Koehler@awi.de) or Kristina Bär, Communications and Media, Tel. +49(0)471 4831-2139 (e-mail: kristina.charlotte.baer@awi.de). Please find printable images on: http://www.awi.de/en/news/press_releases/

The Alfred Wegener Institute conducts research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of eighteen research centres in the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de/en/news/press_releases/

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>