Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphibians and dinosaurs were the new large predators after the mass extinction

20.03.2014

Immediately after the biggest extinction event of all time there were once again functioning and complete food webs in the oceans of the Early Triassic. Contrary to previous assumptions there were large predators, too. Large predatory fish and amphibians, and later dinosaurs too, were the last link in the food chain. This is demonstrated in new studies by palaeontologists at the Universities of Zurich and Utah, USA.

252 million years ago the largest extinction event occurred at the end of the Permian age. It wiped out almost 90 percent of all life in water.


Fossil von Saurichthys, einem Topräuber unter den Trias-Fischen. Bild: UZH


Fossil und Lebendrekonstruktion von Askeptosaurus, eines grossen Meeresreptils der Trias-Zeit. Solche Thalattosaurier bzw. Meeres- oder Ozanechsen konnten über vier Meter lang werden. Bild: UZH

So far researchers had assumed that the ecosystems gradually recovered from this catastrophe over a long stretch of eight to nine million years and that large predators at the uppermost end of the food chain were the last to reappear.

A Swiss-American team of palaeontologists headed by Torsten Scheyer and Carlo Romano from the University of Zurich demonstrate in their new study that the food nets during the Early Triassic did not recover in stages. Large predators like, for instance, crocodile-like amphibians and later the precursors of the known plesiosaurs and ichthyosaurs went in search of prey in the oceans soon after the end of the mass extinction. 

Large predators in on the action from the very start

Apex predators – large predators at the uppermost end of the food chain – are extremely important for the health and stability of an ecosystem. They eradicate sick and weak animals and exercise constant selection pressure on the species they prey on. Hence, Scheyer and his colleagues wanted to establish whether the apex predators really were missing from the oceans after the mass extinction and how the ecosystems functioned.

The researchers looked at the global distribution of predatory marine vertebrates and their body size in the Early and Middle Triassic and came to surprising conclusions. “The apex marine predators recovered after the large extinction over a very, comparatively short period of time”, says Torsten Scheyer.

The researchers were also able to refute a second theory. Earlier it had been assumed that marine predators grew continuously larger from the Early to the Middle Triassic culminating in the apex predators.

“We now demonstrate that already in the Early Triassic large predators hunted in the seas”, adds Carlo Romano.”The length of the food chains was not shortened by the end-Permian mass extinction. Nor are there any signs of a gradual re-emergence of the classical trophic pyramids from the base to the top”, explains Hugo Bucher.

To gain greater understanding of food webs, attention had to be paid not only to the shape of the food webs but also to the dynamics, i.e. the evolutionary rates of the participating species.

New actors in old roles

The large end-Permian mass extinction led to a completely new composition of apex predators. Large predatory fish were dominant in the Permian age but they had to share this role with predatory crocodile-like amphibians after the mass extinction. Another extinction event around two million years later, the End Smithian crisis, triggered changes in the group of apex predators. From this point in time fish and for the first time reptiles like, for instance, Askeptosaurus were at the uppermost end of the food chains.

“The role of the large predators always remained the same in the ecosystems; only the actors changed over the course of time”, comments Torsten Scheyer when summing up the new results. The researchers are convinced that insight into events in the past will contribute to better understanding of the impact of today’s climate changes on ecosystems.

Literature:
Torsten M. Scheyer, Carlo Romano, Jim Jenks, Hugo Bucher. Early Triassic Marine Biotic Recovery: The Predators’ Perspective. PLOS ONE, March 19, 2014. DOI: 10.1371/journal.pone.0088987


Contact:
Dr. Torsten Scheyer
Palaeontological Institute and Museum
University of Zurich
Tel. + 41 634 23 22
Email:tscheyer@pim.uzh.ch

Dr. Carlo Romano
Palaeontological Institute and Museum
University of Zurich
Karl Schmid-Strasse 4
CH 8006 Zürich
Tel. + 41 634 23 47
Email carlo.romano@pim.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Askeptosaurus Recovery Saurichthys Triassic amphibians dinosaurs ecosystems oceans species

More articles from Earth Sciences:

nachricht Only above-water microbes play a role in cave development
03.09.2015 | Penn State

nachricht NASA sees shapeless Tropical Depression 14E
03.09.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>