Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphibians and dinosaurs were the new large predators after the mass extinction

20.03.2014

Immediately after the biggest extinction event of all time there were once again functioning and complete food webs in the oceans of the Early Triassic. Contrary to previous assumptions there were large predators, too. Large predatory fish and amphibians, and later dinosaurs too, were the last link in the food chain. This is demonstrated in new studies by palaeontologists at the Universities of Zurich and Utah, USA.

252 million years ago the largest extinction event occurred at the end of the Permian age. It wiped out almost 90 percent of all life in water.


Fossil von Saurichthys, einem Topräuber unter den Trias-Fischen. Bild: UZH


Fossil und Lebendrekonstruktion von Askeptosaurus, eines grossen Meeresreptils der Trias-Zeit. Solche Thalattosaurier bzw. Meeres- oder Ozanechsen konnten über vier Meter lang werden. Bild: UZH

So far researchers had assumed that the ecosystems gradually recovered from this catastrophe over a long stretch of eight to nine million years and that large predators at the uppermost end of the food chain were the last to reappear.

A Swiss-American team of palaeontologists headed by Torsten Scheyer and Carlo Romano from the University of Zurich demonstrate in their new study that the food nets during the Early Triassic did not recover in stages. Large predators like, for instance, crocodile-like amphibians and later the precursors of the known plesiosaurs and ichthyosaurs went in search of prey in the oceans soon after the end of the mass extinction. 

Large predators in on the action from the very start

Apex predators – large predators at the uppermost end of the food chain – are extremely important for the health and stability of an ecosystem. They eradicate sick and weak animals and exercise constant selection pressure on the species they prey on. Hence, Scheyer and his colleagues wanted to establish whether the apex predators really were missing from the oceans after the mass extinction and how the ecosystems functioned.

The researchers looked at the global distribution of predatory marine vertebrates and their body size in the Early and Middle Triassic and came to surprising conclusions. “The apex marine predators recovered after the large extinction over a very, comparatively short period of time”, says Torsten Scheyer.

The researchers were also able to refute a second theory. Earlier it had been assumed that marine predators grew continuously larger from the Early to the Middle Triassic culminating in the apex predators.

“We now demonstrate that already in the Early Triassic large predators hunted in the seas”, adds Carlo Romano.”The length of the food chains was not shortened by the end-Permian mass extinction. Nor are there any signs of a gradual re-emergence of the classical trophic pyramids from the base to the top”, explains Hugo Bucher.

To gain greater understanding of food webs, attention had to be paid not only to the shape of the food webs but also to the dynamics, i.e. the evolutionary rates of the participating species.

New actors in old roles

The large end-Permian mass extinction led to a completely new composition of apex predators. Large predatory fish were dominant in the Permian age but they had to share this role with predatory crocodile-like amphibians after the mass extinction. Another extinction event around two million years later, the End Smithian crisis, triggered changes in the group of apex predators. From this point in time fish and for the first time reptiles like, for instance, Askeptosaurus were at the uppermost end of the food chains.

“The role of the large predators always remained the same in the ecosystems; only the actors changed over the course of time”, comments Torsten Scheyer when summing up the new results. The researchers are convinced that insight into events in the past will contribute to better understanding of the impact of today’s climate changes on ecosystems.

Literature:
Torsten M. Scheyer, Carlo Romano, Jim Jenks, Hugo Bucher. Early Triassic Marine Biotic Recovery: The Predators’ Perspective. PLOS ONE, March 19, 2014. DOI: 10.1371/journal.pone.0088987


Contact:
Dr. Torsten Scheyer
Palaeontological Institute and Museum
University of Zurich
Tel. + 41 634 23 22
Email:tscheyer@pim.uzh.ch

Dr. Carlo Romano
Palaeontological Institute and Museum
University of Zurich
Karl Schmid-Strasse 4
CH 8006 Zürich
Tel. + 41 634 23 47
Email carlo.romano@pim.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Askeptosaurus Recovery Saurichthys Triassic amphibians dinosaurs ecosystems oceans species

More articles from Earth Sciences:

nachricht Crucial peatlands carbon-sink vulnerable to rising sea levels
29.06.2016 | University of Exeter

nachricht ChemCam findings hint at oxygen-rich past on Mars
28.06.2016 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>