Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Africa, From a CATS Point of View

27.02.2015

First image from NASA's instrument provides a profile of the atmosphere above Africa

From Saharan dust storms to icy clouds to smoke on the opposite side of the continent, the first image from NASA's newest cloud- and aerosol-measuring instrument provides a profile of the atmosphere above Africa.


This cross-section of the atmosphere over Africa shows clouds, dust and smoke from fires, as well as topography returned by the Cloud-Aerosol Transport System (CATS) instrument aboard the International Space Station.

Credit: NASA

The Cloud-Aerosol Transport System instrument (CATS), was launched Jan. 10 aboard a SpaceX Dragon spacecraft, and was installed on the International Space Station on Jan. 22. From its berth on the station, CATS sends laser pulses toward Earth, detecting the photons that bounce off of particles in the atmosphere to measure clouds, volcanic ash, pollutants, dust and other aerosols.

"Everything's turned on and we're getting data, both daytime and nighttime," said Matt McGill, principal investigator of CATS from NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We can see the ground, stratus clouds, cirrus clouds and over Africa we can see desert dust. The photon-counting detection approach used in CATS appears to be more sensitive than previous lidar [light detection and ranging] sensors."

The CATS image shows a profile of particles in the atmosphere over a swath of Africa, from 30 degrees North to 30 degrees South, as the space station flew over it in the early morning of Feb. 11.

Over northern Africa, particles - likely dust kicked up by Saharan windstorms - reach heights of 2.5 to 3 miles (4 to 5 kilometers), said John Yorks, science lead for CATS at Goddard. As the space station approached the equator, the instrument picked up higher atmospheric particles - thin, wispy ice clouds as high as 10 miles above the surface (16 km). South of the cloudy tropics, aerosols appeared closer to the ground, likely smoke from biomass burning. The results from CATS can also be combined with images of Earth from instruments like the Moderate Resolution Imaging Spectroradiometer, flown on the Terra and Aqua satellites.

The CATS team is calibrating data from the two wavelengths on the primary laser operating now - 532 nanometers and 1064 nanometers. The backup laser on CATS has three wavelengths. The different wavelengths reflect differently when they hit aerosols, so comparing the returns from multiple wavelengths allows the scientists to distinguish dust from ice, smoke or other airborne particles.

"The differences between wavelengths are subtle, but the ratio of the intensity of the reflection at different wavelengths indicate aerosol type," Yorks said. The CATS team will also look at other characteristics of the laser pulse returns to help with particle identification.

Before receiving data plots like the one over Africa, the team aligned the telescope pointing. They used motors to adjust optics inside the instrument during nighttime segments until they got the strongest signal, indicating that the telescope's field of view aligned with the reflected laser photons.

"It's a difficult process, and it took us several days to get the telescope aligned," Yorks said. "But once we did, we were able to see these really small features, such as the thin cirrus clouds and the thin aerosol layers."

Data from CATS will help scientists model the structure of dust plumes and other atmospheric features, which can travel far distances and impact air quality. Climate scientists will also use the CATS data, along with data from other Earth-observing instruments, to look at trends and interactions in clouds and aerosols over time.

CATS is not only a science instrument, but a demonstration of how researchers can use the space station as a base for Earth-observing studies.

"The ISS is an interesting, low-cost platform for demonstrating new Earth Science measurements and technologies," McGill said. "For example, the ability to downlink data, continuously, in near-real time is a great advantage for testing flow of data into predictive models. However, practical limitations come with the ISS platform. For example, interruptions to operations occur due to visiting vehicle arrivals and departures. If your science demands 100 percent operational duty cycle, then ISS may not be the platform of choice."

The CATS team is moving forward with calibration and improving computer programs to identify types of aerosols, and by April hopes to be able to provide a data product to aerosol monitoring groups three hours after the data are collected, and provide products to the public within 12 hours.

CATS was designed and built by a small team at Goddard, with funds from the International Space Station Program's NASA Research Office, which also provided a spot on the station. Funding for the processing of data comes from NASA's Earth Science Division. The instrument is designed to operate for at least six months, with a goal of three years.

###

For more information on CATS, visit: http://cats.gsfc.nasa.gov/

For more information on the International Space Station, visit: http://www.nasa.gov/mission_pages/station/main/index.html

Kate Ramsayer | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>