Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Africa, From a CATS Point of View

27.02.2015

First image from NASA's instrument provides a profile of the atmosphere above Africa

From Saharan dust storms to icy clouds to smoke on the opposite side of the continent, the first image from NASA's newest cloud- and aerosol-measuring instrument provides a profile of the atmosphere above Africa.


This cross-section of the atmosphere over Africa shows clouds, dust and smoke from fires, as well as topography returned by the Cloud-Aerosol Transport System (CATS) instrument aboard the International Space Station.

Credit: NASA

The Cloud-Aerosol Transport System instrument (CATS), was launched Jan. 10 aboard a SpaceX Dragon spacecraft, and was installed on the International Space Station on Jan. 22. From its berth on the station, CATS sends laser pulses toward Earth, detecting the photons that bounce off of particles in the atmosphere to measure clouds, volcanic ash, pollutants, dust and other aerosols.

"Everything's turned on and we're getting data, both daytime and nighttime," said Matt McGill, principal investigator of CATS from NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We can see the ground, stratus clouds, cirrus clouds and over Africa we can see desert dust. The photon-counting detection approach used in CATS appears to be more sensitive than previous lidar [light detection and ranging] sensors."

The CATS image shows a profile of particles in the atmosphere over a swath of Africa, from 30 degrees North to 30 degrees South, as the space station flew over it in the early morning of Feb. 11.

Over northern Africa, particles - likely dust kicked up by Saharan windstorms - reach heights of 2.5 to 3 miles (4 to 5 kilometers), said John Yorks, science lead for CATS at Goddard. As the space station approached the equator, the instrument picked up higher atmospheric particles - thin, wispy ice clouds as high as 10 miles above the surface (16 km). South of the cloudy tropics, aerosols appeared closer to the ground, likely smoke from biomass burning. The results from CATS can also be combined with images of Earth from instruments like the Moderate Resolution Imaging Spectroradiometer, flown on the Terra and Aqua satellites.

The CATS team is calibrating data from the two wavelengths on the primary laser operating now - 532 nanometers and 1064 nanometers. The backup laser on CATS has three wavelengths. The different wavelengths reflect differently when they hit aerosols, so comparing the returns from multiple wavelengths allows the scientists to distinguish dust from ice, smoke or other airborne particles.

"The differences between wavelengths are subtle, but the ratio of the intensity of the reflection at different wavelengths indicate aerosol type," Yorks said. The CATS team will also look at other characteristics of the laser pulse returns to help with particle identification.

Before receiving data plots like the one over Africa, the team aligned the telescope pointing. They used motors to adjust optics inside the instrument during nighttime segments until they got the strongest signal, indicating that the telescope's field of view aligned with the reflected laser photons.

"It's a difficult process, and it took us several days to get the telescope aligned," Yorks said. "But once we did, we were able to see these really small features, such as the thin cirrus clouds and the thin aerosol layers."

Data from CATS will help scientists model the structure of dust plumes and other atmospheric features, which can travel far distances and impact air quality. Climate scientists will also use the CATS data, along with data from other Earth-observing instruments, to look at trends and interactions in clouds and aerosols over time.

CATS is not only a science instrument, but a demonstration of how researchers can use the space station as a base for Earth-observing studies.

"The ISS is an interesting, low-cost platform for demonstrating new Earth Science measurements and technologies," McGill said. "For example, the ability to downlink data, continuously, in near-real time is a great advantage for testing flow of data into predictive models. However, practical limitations come with the ISS platform. For example, interruptions to operations occur due to visiting vehicle arrivals and departures. If your science demands 100 percent operational duty cycle, then ISS may not be the platform of choice."

The CATS team is moving forward with calibration and improving computer programs to identify types of aerosols, and by April hopes to be able to provide a data product to aerosol monitoring groups three hours after the data are collected, and provide products to the public within 12 hours.

CATS was designed and built by a small team at Goddard, with funds from the International Space Station Program's NASA Research Office, which also provided a spot on the station. Funding for the processing of data comes from NASA's Earth Science Division. The instrument is designed to operate for at least six months, with a goal of three years.

###

For more information on CATS, visit: http://cats.gsfc.nasa.gov/

For more information on the International Space Station, visit: http://www.nasa.gov/mission_pages/station/main/index.html

Kate Ramsayer | EurekAlert!

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>