Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

6 years after the tsunami disaster

23.12.2010
Technical setup of the early warning sysem completed

Six years after the tsunami disaster of 26/12/2004, the set-up of the German-Indonesian Tsunami Early Warning System for the Indian Ocean (GITEWS) has been completed. The project ends on 31 March 2011. After that, Indonesia accepts the sole responsibility for the overall system.

"The innovative technical approach of GITEWS is based on a combination of different sensors, whose central element is a fast and precise detection and analysis of earthquakes, supported by GPS measurements," says Professor Reinhard Hüttl, Scientific Director of the GFZ German Research Centre for Geosciences. "The GFZ-developed evaluation of Seismology via the SeisComP3 system proved to be so fast and reliable that it has now been installed in over 40 countries."

A tsunami warning takes place no more than five minutes after a submarine earthquake, based on all the available information from the 300 stations that were built throughout Indonesia in the past 6 years. These include seismometers, GPS stations, tide gauges and buoy systems. Via a tsunami-simulation system, the information is converted into a situation map providing the appropriate warning levels for the affected coastline. A key outcome of GITEWS project is, however, that the buoy systems do not contribute to this process that occurs in these first few minutes. There are therefore considerations to shift the GITEWS buoys further into the open ocean and to use them to verify an ocean-wide tsunami that could threaten other countries bordering the Indian Ocean.

The Mentawai quake on 25 October this year, however, also showed the limits of any tsunami warning. The tsunami caused by the earthquake strongly affected the upstream Pagai islands in the Sunda Arc. The first waves arrived around the same time as the triggered tsunami alert, 4 minutes 46 seconds after the quake, and demanded some 500 lives. Several teams of tsunami experts from Japan, Indonesia, Germany and the USA noted in a follow-up analysis that the warning had arrived on the islands, but there had been no time to react. For the main island of Sumatra with the larger cities of Padang and Bengkulu, the time between the warning and the arrival of the first waves amounted to about 40 minutes, but in this case the Pagai Islands acted as a perfect shield against a tsunami reaching the coast of Sumatra.

The important conclusion is that even with the extremely short premonition times off Indonesia, the GITEWS system has proven to be technically and organizationally functional. Since September 2007, four tsunami events were detected and warnings were issued for each. Especially the inhabitants of the off-shore islands, however, need to receive intensified and improved training on how to act when threatened. This includes not only the correct response during a tsunami alert, but also the correct behaviour before, during and after earthquakes.

Immediately after the disaster of 26 December 2004, the Federal Government of Germany contracted the Helmholtz Association, represented by the Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, to develop and implement an early warning system for tsunamis in the Indian Ocean. The funds to the amount of 45 million euros are a contribution of the Federal Government from the aid-for-flood-victims pool.

A natural phenomenon like the tsunami of 2004 cannot be prevented, and such disasters will continue to claim victims, even with a perfectly working alarm system. But the repercussions of such a natural disaster can be minimized with an early warning system. This is the aim of GITEWS.

see also:

http://www.gfz-potsdam.de/portal/gfz/Public+Relations/Pressemitteilungen/aktuell/101028_TsunamiOkt2010

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de

Further reports about: GFZ GITEWS GPS data Geosciences Helmholtz Indian Ocean Pacific Ocean early warning system

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>