Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 NASA satellites see wide-eyed Cyclone Haruna

21.02.2013
Cyclone Haruna strengthened into a cyclone and quickly developed an eye that became apparent on visible and infrared imagery from NASA's Aqua satellite. NASA's TRMM satellite analyzed Haruna's heavy rainfall, and NASA and NOAA's Suomi NPP satellite captured a night-time image that verified the strongest areas of the storm.

On Feb. 20 at 1111 UTC (6:11 a.m. EST/U.S.) the AIRS instrument aboard NASA's Aqua satellite captured this infrared image of Tropical Cyclone Storm Haruna. The area of strongest thunderstorms circled the eye and had cloud top temperatures colder than -63F (-52C). Those cold cloud top temperatures indicated strong storms with heavy rainfall, which was verified by NASA's Tropical Rainfall Measuring Mission (TRMM) satellite.


This false-colored infrared night-time image from NASA-NOAA's Suomi NPP satellite on Feb. 19 at 2303 UTC shows Cyclone Haruna's coldest cloud top temperatures (white) were north of the center.

Credit: NASA/NOAA/University of Wisconsin Madison

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies with AIRS aboard NASA's Aqua satellite captured a visible image of Tropical Storm Haruna on Feb. 20 at 1115 UTC (6:15 a.m. EST) that revealed its large eye.

NASA's TRMM satellite flew above intensifying tropical storm Haruna on February 20, 2013 at 0717 UTC (2:17 a.m. EST). A rainfall analysis was created using data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments overlaid on a combination visible/infrared image from the Visible and InfraRed Scanner (VIRS). The analysis showed that Haruna had become much better organized since Feb. 19 and developed intense bands of rainfall circling the cyclone's center. Some rain in powerful storms on the northern edge of Haruna's center was found by TRMM PR to be falling at a rate of over 108 mm (~4.25 inches) per hour.
NASA's TRMM Precipitation Radar (PR) was used to create a 3-D image that sliced through tropical storm Haruna's center. TRMM data showed that towering thunderstorms on the northern edge of Haruna's center were over 14.25 km (~8.85 miles) high.

NASA-NOAA's Suomi NPP satellite captured infrared night-time data of Cyclone Haruna on Feb. 19 at 2303 UTC (2 a.m. local time Madagascar on Feb. 20). The data was false-colored at the University of Wisconsin Madison and showed the coldest cloud top temperatures and heaviest rainfall north of the center of circulation, verifying NASA's TRMM satellite data.

At 1500 UTC (10 a.m. EST) on Feb. 20, Haruna reached hurricane (or cyclone)-force with maximum sustained winds near 70 knots (80 mph/129.6 kph). Haruna is centered near 22.1 south latitude and 40.7 east longitude, about 400 nautical miles (460 miles/741 km) west-southwest of Antananarivo, Madagascar. Haruna is moving to the west at 4 knots (4.6 mph/7.4 kph) and generating 25-foot-high (7.6 meter-high) waves.

Forecasters at the Joint Typhoon Warning Center expect Haruna to make a brief landfall near Androka in the southwestern part of Madagascar as the storm heads southeast into the open waters of the southern Indian Ocean.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>