Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 billion-year-old microfossils include plankton

07.06.2013
Spindle-shaped inclusions in 3 billion-year-old rocks are microfossils of plankton that probably inhabited the oceans around the globe during that time, according to an international team of researchers.

"It is surprising to have large, potentially complex fossils that far back," said Christopher H. House, professor of geosciences, Penn State, and lead author.


These are spindle-like microstructures from the Farrel Quartzite, Western Australia.

Credit: Christopher House, Penn State

However, the researchers not only showed that these inclusions in the rocks were biological in origin, but also that they were likely planktonic autotrophs -- free-floating, tiny ocean organisms that produce energy from their environment.

The researchers looked at marine sediment rocks from the Farrel Quartzite in Western Australia. Isotopic analysis using secondary ion mass spectrometry was carried out at UCLA. "Ken (Kenichiro Sugitani, professor, Graduate School of Environmental Studies, Nagoya University, Japan, and a co-author) discovered these unusually shaped microfossils embedded in really old rock," said House.

To determine if these inclusions were actually biological in origin, the researchers looked at 15 different samples of Farrel Quartzite and determined their stable carbon isotope ratios. The percentage of carbon 13 in the microfossils was indicative of material produced by biological processes. They found that the carbon 13 percentage in the background organic matter in the surrounding rock was different from that of the microstructures.

"When considered along with published morphological and chemical studies, these results indicate that the Farrel Quartzite microstructures are bona fide microfossils, and support the interpretation that the spindles were planktonic," the researchers report in the current issue of Geology. The morphological and chemical studies were done by Sugitani and Dorothy Oehler, who is also a co-author and research scientist, Astromaterials Research and Exploration Science Directorate, NASA -- Johnson Space Center.

The spindle-shaped microfossils are from 20 to 60 microns in length, about the size of fine sand and within the size range of today's microplankton.

Stable carbon isotope analysis can determine the biological origin of these microfossils because they used carbon dioxide to create energy and incorporated the carbon into themselves. During this process, the organisms selectively incorporate more carbon 12 than carbon 13 from the available carbon, producing a signature of biological origin.

Oehler notes that the spindles appear to be the same as those found in rocks from the Strelly Pool Formation in Western Australia and the Onverwacht Group in South Africa and Swaziland that are both 3.4 billion years old.

"The existence of these microfossils in diverse locations as far back as 3.4 billion years ago suggests that the oceans probably had life in them for a very extended period of time," said Oehler. "Moreover, this has implications beyond what we have done here, suggesting the evolution of diverse life proceeded quickly."

Also working on this project was Koichi Mimura, Graduate School of Environmental Studies, Nagoya University, Japan.

The NASA Astrobiology Institute, the Astromaterials Research and Exploration Science Directorate, Johnson Space Center and the Japan Society for the Promotion of Science supported this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>