Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Storm of the century' may become 'storm of the decade'

As the Earth's climate changes, the worst inundations from hurricanes and tropical storms could become far more common in low-lying coastal areas, a new study suggests.
Researchers from Princeton University and the Massachusetts Institute of Technology found that regions such as the New York City metropolitan area that currently experience a disastrous flood every century could instead become submerged every one or two decades.

The researchers report in the journal Nature Climate Change that projected increases in sea level and storm intensity brought on by climate change would make devastating storm surges — the deadly and destructive mass of water pushed inland by large storms — more frequent. Using various global climate models, the team developed a simulation tool that can predict the severity of future flooding an area can expect.

The researchers used New York City as a test case and found that with fiercer storms and a 3-foot rise in sea level due to climate change, "100-year floods" — a depth of roughly 5.7 feet above tide level that occurs roughly once a century — could more likely occur every three to 20 years. What today are New York City's "500-year floods" — or waters that reach more than 9 feet deep — could, with climate change, occur every 25 to 240 years, the researchers wrote.

The research is not only the first to examine the future intensity of storm surges, but also to offer a tool for estimating an area's vulnerability, said co-author Michael Oppenheimer, the Albert G. Milbank Professor of Geosciences and International Affairs at Princeton.

"Coastal managers in cities like New York make daily decisions about costly infrastructure that would be affected by such storms. They need a reliable indicator of the risk," he said.

"Our modeling approach is designed as a key step in this direction," Oppenheimer said. "As the world warms, risks will increase across a variety of fronts, and the threat to coastal infrastructure in the face of an already-rising sea level and potentially stronger hurricanes could be one of the most costly unless we are able to anticipate and reduce vulnerability."
Lead author Ning Lin, a postdoctoral fellow at MIT, said that knowing the frequency of storm surges may help urban and coastal planners design seawalls and other protective structures. Lin, who received her Ph.D. from Princeton in 2010, began the project at Princeton then continued it at MIT; the current report is based on her work at MIT.

"When you design your buildings or dams or structures on the coast, you have to know how high your seawall has to be," said Lin, noting that Manhattan's seawalls now stand a mere 5 feet high. "You have to decide whether to build a seawall to prevent being flooded every 20 years."

Lin and Oppenheimer worked with study co-authors Kerry Emanuel, an MIT atmospheric science professor, and Erik Vanmarcke, a Princeton professor of civil and environmental engineering. Lin, Vanmarcke and Emanuel also co-wrote a 2010 report on the project published in the Journal of Geophysical Research that was based on Lin's work at Princeton.

Carol Friedland, an assistant professor of construction management and industrial engineering at Louisiana State University, sees the latest results as a useful tool to inform coastal design — particularly, she notes, as most buildings are designed with a 60- to 120-year "usable lifespan."

"The physical damage and economic loss that result from storm surge can be devastating to individuals, businesses, infrastructure and communities," Friedland said. "For current coastal community planning and design projects, it is essential that the effects of climate change be included in storm-surge predictions."

The researchers ran a total of 45,000 storm simulations for the New York City region under two scenarios: current climate conditions from 1981 to 2000 based on observed data and four global climate models; and projected climate conditions for the years 2081 to 2100 based on the four climate models, as well as future carbon dioxide output as predicted by the Intergovernmental Panel on Climate Change (IPCC). Oppenheimer is a longtime participant in the IPCC.

Storms in the simulations occurred within a 125-mile (200-kilometer) radius of the Battery, at the southern tip of Manhattan, and generated a maximum wind speed of at least 50 miles per hour. Hurricanes are classified as having a maximum wind speed of at least 74 miles per hour.

Once the researchers simulated storms in the region, they then simulated the resulting storm surges using three different methods, including one used by the National Hurricane Center (NHC). In the days or hours before a hurricane hits land, the NHC uses a storm-surge model to predict the risk and extent of flooding from the impending storm. Such models, however, have not been used to evaluate multiple simulated storms under a scenario of climate change.

Again, the group compared results from multiple methods: one from the NHC that simulates storm surges quickly, though coarsely; another method that generates more accurate storm surges, though more slowly; and a method in between, developed by Lin and her colleagues, that estimates relatively accurate surge floods, relatively quickly.

The researchers found that the frequency of massive storm surges would go up in proportion to an increase in more violent storms and a rise in sea level, the researchers reported. They noted that climate models predict that the sea level around New York City could rise by 1.5 to nearly 5 feet by the end of the 21st century.

Flooding was amplified by the storm's wind direction and proximity to the city. The worst simulated flood, a 15.5-foot storm surge at Manhattan's Battery, stemmed from a high-intensity storm moving northeast and very close to the city. On the other hand, a weaker but larger northwest-bound storm that was further from the city resulted in floodwater nearly 15 feet deep as its strongest winds pushed water toward the Battery.

Floods of this magnitude outstrip the most devastating storm surges in the city's recorded history, Lin said. The worst accompanied the 1821 Norfolk and Long Island hurricane, which packed winds of 135 miles per hour and is one of only four hurricanes known to have made landfall in New York City since pre-Columbian times.

"The highest [surge flood] was 3.2 meters [10.4 feet], and this happened in 1821," Lin said. "That's the highest water level observed in New York City's history, which is like a present 500-year event."

The study was published online Feb. 14 by the journal Nature Climate Change, and was supported by the U.S. National Oceanic and Atmospheric Administration, and the Princeton Environmental Institute through a fellowship from the Program in Science, Technology and Environmental Policy based in Princeton's Woodrow Wilson School of Public and International Affairs.

Jennifer Chu of MIT contributed to this story.

Morgan Kelly | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>