Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video Games Lead to Faster Decisions That Are No Less Accurate

14.09.2010
Cognitive scientists from the University of Rochester have discovered that playing action video games trains people to make the right decisions faster.

The researchers found that video game players develop a heightened sensitivity to what is going on around them, and this benefit doesn’t just make them better at playing video games, but improves a wide variety of general skills that can help with everyday activities like multitasking, driving, reading small print, keeping track of friends in a crowd, and navigating around town.

In an upcoming study in the journal Current Biology, authors Daphne Bavelier, Alexandre Pouget, and C. Shawn Green report that video games could provide a potent training regimen for speeding up reactions in many types of real-life situations.

Video games have grown in popularity to the point where 68 percent of American households have members that play them, according to a 2009 report by the Entertainment Software Association.

The researchers tested dozens of 18- to 25-year-olds who were not ordinarily video game players. They split the subjects into two groups. One group played 50 hours of the fast-paced action video games “Call of Duty 2” and “Unreal Tournament,” and the other group played 50 hours of the slow-moving strategy game “The Sims 2.”

After this training period, all of the subjects were asked to make quick decisions in several tasks designed by the researchers. In the tasks, the participants had to look at a screen, analyze what was going on, and answer a simple question about the action in as little time as possible (i.e. whether a clump of erratically moving dots was migrating right or left across the screen on average). In order to make sure the effect wasn’t limited to just visual perception, the participants were also asked to complete an analogous task that was purely auditory.

The action game players were up to 25 percent faster at coming to a conclusion and answered just as many questions correctly as their strategy game playing peers.

“It’s not the case that the action game players are trigger-happy and less accurate: They are just as accurate and also faster,” Bavelier said. “Action game players make more correct decisions per unit time. If you are a surgeon or you are in the middle of a battlefield, that can make all the difference.”

The authors’ neural simulations shed light on why action gamers have augmented decision making capabilities. People make decisions based on probabilities that they are constantly calculating and refining in their heads, Bavelier explains. The process is called probabilistic inference. The brain continuously accumulates small pieces of visual or auditory information as a person surveys a scene, eventually gathering enough for the person to make what they perceive to be an accurate decision.

“Decisions are never black and white,” she said. “The brain is always computing probabilities. As you drive, for instance, you may see a movement on your right, estimate whether you are on a collision course, and based on that probability make a binary decision: brake or don’t brake.”

Action video game players’ brains are more efficient collectors of visual and auditory information, and therefore arrive at the necessary threshold of information they need to make a decision much faster than non gamers, the researchers found.

The new study builds on previous work by Bavelier and colleagues that showed that video games improve vision by making players more sensitive to slightly different shades of color.

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Alan Blank | Newswise Science News
Further information:
http://www.rochester.edu

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>