Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Twitter to Predict the Influence of Lifestyle on Health

11.02.2013
Researchers at the University of Rochester showed last year how Twitter can be used to predict how likely it is for a Twitter user to become sick. They have now used Twitter to model how other factors – social status, exposure to pollution, interpersonal interaction and others – influence health.

"If you want to know, down to the individual level, how many people are sick in a population, you would have to survey the population, which is costly and time-consuming," said Adam Sadilek, postdoctoral researcher at the University of Rochester. "Twitter and the technology we have developed allow us to do this passively, quickly and inexpensively; we can listen in to what people are saying and mine this data to make predictions."

Sadilek also explained that many tweets are geo-tagged, which means they carry GPS information that shows exactly where the user was when he or she tweeted.

Collating all this information allows the researchers to map out, in space and in time, what people said in their tweets, but also where they were and when they were there. By following thousands of users as they tweet and go about their lives, researchers also could estimate interactions between two users and between users and their environment.

In a paper to be presented on Feb. 8 at the International Conference on Web Searching and Data Mining in Rome, Italy, Sadilek will show how their new model accounts for many of the factors that affect health and how it can complement traditional studies in life sciences. Using tweets collected in New York City over a period of a month, they looked at factors like how often a person takes the subway, goes to the gym or a particular restaurant, proximity to a pollution source and their online social status. They looked at 70 factors in total. They then looked at whether these had a positive, negative or neutral impact on the users' health.

Some of their results are perhaps not surprising; for example, pollution sources seem to have a negative effect on health. However, this is the first time this impact has been extracted from the online behavior of a large online population. The paper also reveals a broader pattern, where virtually any activity that involves human contact leads to significantly increased health risks. For example, even people who regularly go to the gym get sick marginally more often than less active individuals. However, people who merely talk about going to the gym, but actually never go (verified based on their GPS), get sick significantly more often. This shows that there are interesting confounding factors that can now be studied at scale.

The technology that Sadilek and his colleague Professor Henry Kautz have developed has led to a web application called GermTracker. The application color-codes users (from red to green) according to their health by mining information from their tweets for 10 cities worldwide. Using the GPS data encoded in the tweets the app can then place people on a map, which allows anyone using the application to see their distribution.

"This app can be used by people to make personal decisions about their health. For example, they might want to avoid a subway station if it's full of sick people," Sadilek suggested. "It could also be used in conjunction with other methods by governments or local authorities to try to understand outbursts of the flu."

It is now flu season and as the number of people with the flu across the U.S. increases, so do the number of people monitoring GermTracker. On some days in January 10,000 people visited the http://fount.in website where the app is hosted.

The model that Sadilek and his colleagues developed is based on machine-learning. At the heart of their work is how they are training an algorithm to distinguish between tweets that suggest the person tweeting is sick and those that don't.

"It's like teaching a baby a new language," Sadilek said. He explained that they first generated a training set of data, 5,000 tweets that had been manually categorized and from which the algorithm can start to distinguish what words and phrases are associated with someone being sick. He added, "We need the algorithm to understand that someone who tweets 'I'm sick and have been in bed all day' should be characterized as sick, but 'I'm sick of driving around in this traffic' shouldn't be."

The application is also improving the algorithm. Every time someone goes onto the application and clicks on one of the colored dots that represent the tweeting users, they can see the specific tweet that led someone to be classified in a specific way. The application asks you to assess the tweet yourself and say whether you agree with the classification or not. This gets fed back into the algorithm, which continues to learn from its mistakes.

The authors have recently started two collaborations with researchers at the University of Rochester Medical Center. "In one effort, we are planning to link Twitter predictions to clinical influenza studies," said co-author Kautz, chair of the University's computer science department. "In another effort, we are working with faculty in the Department of Psychiatry and the School of Nursing on extending these techniques to monitor and measure factors impacting depression and other psychological disorders."

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Leonor Sierra | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: Applied Science GPS data GermTracker Influence Lifestyle Nursing School Twitter algorithm health services

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>