Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the Weizmann Institute have identified some basic principles of communication

10.05.2006


How do we succeed in putting our ideas into words, so that another person can understand them? This complex undertaking involves translating an idea into a one-dimensional sequence, a string of words to be read or spoken one after the other. Of course the person on the receiving end might not get the intended point: The effective expression of one’s ideas is considered an art, or at least a desirable and important skill.



A team of scientists that included physicists and language researchers at the Weizmann Institute of Science recently investigated this process by applying scientific methods to some of our culture’s most successful models for effective transfer of ideas – classic writings that, by common agreement, get their messages across well. They created mathematical tools that allowed them to trace the development of ideas throughout a book.

The international team included Prof. Elisha Moses of the Weizmann Institute’s Physics of Complex Systems Department and Prof. Jean-Pierre Eckmann, a frequent visitor from the University of Geneva, as well as postdoctoral fellow Enrique Alvarez Lacalle and research student Beate Dorow from the University of Stuttgart. The paper describing their research was recently published in the Proceedings of the National Academy of Sciences (PNAS).


Because strings of words are one-dimensional, they literally lack depth. Our minds and memories aid us in recreating complex ideas from this string. The narration "encodes" a hierarchical structure. (An obvious hierarchical structure in a text is chapter-paragraph-sentence.) The implication is that our minds decipher the encoded structure, allowing us to comprehend the abstract concept.

To test for an underlying structure in strings of words that are known for their ability to convey ideas, the scientists applied their mathematical tools to a number of books, including writings of Albert Einstein, Mark Twain’s Tom Sawyer, Metamorphosis by Franz Kafka and other classics of different styles and periods. They defined "windows of attention" of around 200 words (about a paragraph) and within these windows, they identified pairs of words that frequently occurred near each other (after eliminating "meaningless" words such as pronouns). From the resulting word lists and the frequencies with which the single words appeared in the text, the scientists’ mathematical analysis was used to construct a sort of network of "concept vectors" – linked words that convey the principal ideas of the text.

Mathematically, these concept vectors can go in many directions, and reading the text can be thought of as a tour along paths in the resulting network. The multidimensional concept vectors seem to span a "web of ideas." The scientists’ work suggests this network is based on a tree-like hierarchy that may be a basic underpinning of language. The reader or listener can reconstruct the hierarchical structure of a text, and thus the multidimensional space of ideas, in his or her mind to grasp "the author’s meaning."

Moses: "Philosophers from Wittgenstein to Chomsky have taught us that language plays a central evolutionary role in shaping the human brain, and that revealing the structure of language is an essential step to comprehending brain structure. Our contribution to research in this basic field is in the creation of mathematical tools that can be used to make the connection between concepts or ideas and the words used to express them, making it possible to trace in a speech or text the path of an idea in an abstract mathematical space. We can understand theoretically how the structure of the wording serves to transmit concepts and reconstruct them in the mind of the reader. A deep question that remains open is if and how the correlations we uncovered serve the aesthetics of the text."

Prof. Elisha Moses’ research is supported by the Clore Center for Biological Physics; the Center for Experimental Physics; and the Rosa and Emilio Segre Research Award.

Jeffrey Sussman | EurekAlert!
Further information:
http://www.weizmann-usa.org
http://www.acwis.org

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>