Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the Weizmann Institute have identified some basic principles of communication

10.05.2006


How do we succeed in putting our ideas into words, so that another person can understand them? This complex undertaking involves translating an idea into a one-dimensional sequence, a string of words to be read or spoken one after the other. Of course the person on the receiving end might not get the intended point: The effective expression of one’s ideas is considered an art, or at least a desirable and important skill.



A team of scientists that included physicists and language researchers at the Weizmann Institute of Science recently investigated this process by applying scientific methods to some of our culture’s most successful models for effective transfer of ideas – classic writings that, by common agreement, get their messages across well. They created mathematical tools that allowed them to trace the development of ideas throughout a book.

The international team included Prof. Elisha Moses of the Weizmann Institute’s Physics of Complex Systems Department and Prof. Jean-Pierre Eckmann, a frequent visitor from the University of Geneva, as well as postdoctoral fellow Enrique Alvarez Lacalle and research student Beate Dorow from the University of Stuttgart. The paper describing their research was recently published in the Proceedings of the National Academy of Sciences (PNAS).


Because strings of words are one-dimensional, they literally lack depth. Our minds and memories aid us in recreating complex ideas from this string. The narration "encodes" a hierarchical structure. (An obvious hierarchical structure in a text is chapter-paragraph-sentence.) The implication is that our minds decipher the encoded structure, allowing us to comprehend the abstract concept.

To test for an underlying structure in strings of words that are known for their ability to convey ideas, the scientists applied their mathematical tools to a number of books, including writings of Albert Einstein, Mark Twain’s Tom Sawyer, Metamorphosis by Franz Kafka and other classics of different styles and periods. They defined "windows of attention" of around 200 words (about a paragraph) and within these windows, they identified pairs of words that frequently occurred near each other (after eliminating "meaningless" words such as pronouns). From the resulting word lists and the frequencies with which the single words appeared in the text, the scientists’ mathematical analysis was used to construct a sort of network of "concept vectors" – linked words that convey the principal ideas of the text.

Mathematically, these concept vectors can go in many directions, and reading the text can be thought of as a tour along paths in the resulting network. The multidimensional concept vectors seem to span a "web of ideas." The scientists’ work suggests this network is based on a tree-like hierarchy that may be a basic underpinning of language. The reader or listener can reconstruct the hierarchical structure of a text, and thus the multidimensional space of ideas, in his or her mind to grasp "the author’s meaning."

Moses: "Philosophers from Wittgenstein to Chomsky have taught us that language plays a central evolutionary role in shaping the human brain, and that revealing the structure of language is an essential step to comprehending brain structure. Our contribution to research in this basic field is in the creation of mathematical tools that can be used to make the connection between concepts or ideas and the words used to express them, making it possible to trace in a speech or text the path of an idea in an abstract mathematical space. We can understand theoretically how the structure of the wording serves to transmit concepts and reconstruct them in the mind of the reader. A deep question that remains open is if and how the correlations we uncovered serve the aesthetics of the text."

Prof. Elisha Moses’ research is supported by the Clore Center for Biological Physics; the Center for Experimental Physics; and the Rosa and Emilio Segre Research Award.

Jeffrey Sussman | EurekAlert!
Further information:
http://www.weizmann-usa.org
http://www.acwis.org

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>