Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active listening gives meaning to digital music

22.11.2005


Imagine a home hi-fi system where music was automatically categorised according to preferences, where you could read the lyrics as you listen, summon up a favourite tune by humming it, and play along with your favourites. It may sound farfetched, but all these functions and more have already been achieved.



The SemanticHIFI project, coordinated by the Paris-based music technology institute, Ircam, is unique. It represents a quantum leap in home music technology, in which access to musical content, and the ability to manipulate it, have hardly advanced since the days of the gramophone.

“Essentially, we are adding descriptions to musical content,” explains Ircam’s Hugues Vinet, the project coordinator. “This allows for more interaction with music, so users can do more than just passively listen. Actually, it’s about making our sophisticated software tools for professional musicians available to a broader public.”


These tools enable a wide variety of functions. Some address ways to browse the large number of recordings that now inhabit the average hard disk. “Browsing techniques for digital music were very basic,” explains Vinet. “You could only search ‘editorial’ information, such as titles. But SemanticHIFI will allow people to label and browse their own collections according to actual musical content, categorised as they see fit. “It’s not our object to define genres, but to let people define their own,” explains Vinet. “Then the system learns the definition criteria, and can label other titles accordingly.”

‘Browsing by example’ is another intriguing possibility – simply select the kind of music you want to hear, on the basis of features such as tempo or orchestration, and the programme comes up with a list of comparable pieces.

Naturally, exploring musical content in this way requires a mode of visualisation. “So we have developed a system that analyses the temporal structure of a piece of music and develops a graphical map or interface based on that,” explains Vinet. “So if you click on one of the elements in the graphical map, you go directly to that part of the music. What’s more, using this algorithm you can generate a musical summary as a new file – condensing a long piece into a much shorter one, but complete with all its variations. Then you can manipulate musical content via the summary and the graphical map.”

Another way of navigating through musical documents involves the ability to separate different instruments, using sound manipulation techniques that reproduce sounds in space. Here, SemanticHIFI challenges the usual recorded music model, which is undoubtedly polyphonic: “We have to persuade the music industry to evolve its production process by providing multitrack recordings,” says Vinet. Being able to separate the instruments allows the listener to arrange an orchestra in space, choosing where to place the violins, for example. It invites listeners and musicians to really understand the construction of a piece, and play along with it. “The system even includes simplified musical instruments that you can play with, using your voice,” Vinet explains.

SemanticHIFI’s system architecture has several components: a hi-fi box in the living room will house most of the capabilities. PC applications will enable more advanced functions, such as performance ones. Other capabilities are peer-to-peer file sharing – “In a non-copyright infringing way,” Vinet insists. “Users can share metadata – their indexing and manipulations – but not original tracks. The computer identifies the original behind the metadata, and if you don’t own it, will suggest you buy it. SemanticHIFI is therefore compatible with the commercial model.”

The project counts Berlin’s Native Instruments and the Sony European Technology Centre (Stuttgart) as its industrial partners. Sony handles the integration of the technologies into a box, which is the next step. “We’re two-thirds of the way there,” says Vinet. “All the technologies have been validated and the first application prototypes will be ready early in 2006, for a first trial at the Cité des Sciences in Paris.” He believes it is up to industry to decide the commercial future of the project: “The box itself may be a product, and parts of it may be adapted into mobiles or games – there are many possibilities,” he says.

But whatever form SemanticHIFI takes, one thing is for sure: listening to music will never be the same again.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>