Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins APL Creates System to Detect Digital Video Tampering

29.09.2003


The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., has opened the door to using reliable digital video as evidence in court by developing a system that identifies an attempt to alter digital video evidence.

"It’s not too hard to make changes to digital video," says Tom Duerr, APL’s project manager. "But our system quickly and conclusively detects any alterations made to the original tape." For the past two years Duerr has led development of the project for the United States Postal Inspection Service.

"We’re satisfied that our system can accurately detect tampering and now we’re building a working prototype that can be attached to a camcorder," says Nick Beser, lead engineer for the project. “Our authenticator provides proof of tampering when the human eye can’t detect it. You might theorize that a change has been made, but this system takes the theory out of that determination."



The U.S. Postal Inspection Service, the federal law enforcement agency that safeguards the U.S. Postal Service, its employees and assets, and ensures the integrity of the mail, uses video surveillance and cutting edge technology as investigative tools in many of its cases. "We are looking forward to field testing the prototype developed by APL," says Dennis Jones, assistant postal inspector in charge of the agency’s Forensic & Technical Services Division. "Being able to present a certifiable digital recording in court in support of our investigative efforts will minimize court challenges over the admissibility of such evidence. This system could reinforce the public’s confidence in the work of law enforcement professionals."

Securing the System

The authentication system computes secure computer-generated digital signatures for information recorded by a standard off-the-shelf digital video camcorder. While recording, compressed digital video is simultaneously written to digital tape in the camcorder and broadcast from the camera into the Digital Video Authenticator (currently a laptop PC). There the video is separated into individual frames and three digital signatures are generated per frame – one each for video, audio, and camcorder/DVA control data – at the camcorder frame rate.

Public-key cryptography is used to create unique signatures for each frame. The “keys” are actually parameters from mathematical algorithms embedded in the system. Duerr says, “The keys, signature, and original data are mathematically related in such a way that if any one of the three is modified, the fact that a change took place will be revealed in the verification process.”

One key, called a “private” key, is used to generate the signatures and is destroyed when the recording is complete. The second, a “public” key, is used for verification. To provide additional accountability, a second set of keys is generated that identifies the postal inspector who made the recording. This set of keys is embedded in a secure physical token that the inspector inserts into the system to activate the taping session. The token also signs the Digital Video Authenticator’s public key, ensuring that the public key released with the video signatures was created by the inspector and can be trusted.

The signatures that are generated for the recording make it easy to recognize tampering. If a frame has been added it won’t have a signature and will be instantly detected. If an original frame is altered, the signature won’t match the new data and the frame will fail verification. The method is so perceptive that tampering with even a single bit (an eighth of a byte) of a 120,000-byte video frame is enough to trigger an alert. After an event is recorded, the signatures and the signed public key are transferred to a removable storage device and secured along with the original tape in case the authenticity of a tape is challenged.

When finished, the Digital Video Authenticator is expected to be within the size and cost range of consumer-grade digital camcorders. It will be attached to, rather than embedded in, a video camera, which allows it to be transferred to different cameras when current ones become obsolete. Comparison of signatures with recorded video and analysis of the results will be accomplished in separate software that will run on a desktop PC.

Prototype development will include peer review by other researchers and potential users and is expected to be completed by 2005. In addition to Postal Inspection Service use, the system could serve state and local law enforcement needs and possibly corporate and other business venues.

Helen Worth | JHU
Further information:
http://www.jhuapl.edu/newscenter/pressreleases/2003/030926.htm

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>