Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bradford involved in Olympic TV revolution

02.07.2008
At this year's Olympic Games in Beijing, a European Union sponsored research project called LIVE will test a new set of TV production tools and content formats to “free the viewer from the single channel TV experience”.

LIVE is an integrated research project partially funded under the European Union's IST Sixth Framework Programme. It is being co-ordinated from the Fraunhofer Institute IAIS in Germany and involves a number of partner organisations across Europe, including the University of Bradford.

The LIVE system will make it possible to produce a national Olympic TV programme in which thematically interlinked channels are produced on-demand according viewer feedback and the unfolding live action.

In the time-critical production process of live broadcasting there is little time to search databases for new material so archival content is usually pre-selected. This places a constraint on the ability of the production team to respond to unforeseen events or even satisfy creative impulses during a live broadcast.

The innovation behind LIVE therefore is the ability to analyse, link and recommend content from multiple content sources in the spontaneous and fast moving environment of the live broadcast. During a live broadcast, the LIVE system automatically analyses and aligns content coming in from the multiple incoming streams and available archive material. Additionally, feedback coming in from the TV viewers (switching behaviour and on-screen polls) is also analysed. The meaningful connections between viewer preferences and analysed video material are then processed in real-time and fed into the control room to guide the production process.

Researchers led by Jianmin Jiang, Professor of Digital Media in the University of Bradford’s School of Informatics, are playing leading roles in developing computerised algorithms for automatic and online video content processing and analysis over the incoming camera streams, and thus providing a range of computer-based tools for content producers to deliver the LIVE project concepts and objectives.

Technologies innovated by Bradford researchers include:

• compressed domain shot cut detections to divide video sequences automatically into content-consistent sections to enable content analysis on both temporal and spatial basis

• semantics and metadata extraction via approaches of low-level feature based content processing such as close-up detection, pattern recognition such as face recognition, and machine learning such as SVMs

• video summarization via V-unit detection and adaptive clustering approaches;

• sport video annotation via multiple SVM learning and classifications.

Professor Jiang said: “Reporting real-time live action such as the Olympic Games has always involved a unique style of broadcasting. It involves capturing live action as it unravels, where anything can and so often does happen. However, despite today’s advances in technology and interactive TV formats it remains a single channel broadcast approach. Bradford’s strength is computerised video processing directly in compressed domain, providing extremely fast and low-cost technologies for live video production.

“LIVE is a very important opportunity for us to bridge the gap between computer scientists and media content producers. Research expertise within the School of Informatics has a huge contribution to make to this project and we are very excited to be involved.”

The LIVE production system will be tested at ORF (Austrian Broadcasting Corporation) during the Beijing Olympic Games. A total of 500 Austrian households will be provided with the necessary set-top boxes to view and interact with the "LIVE Olympic Show".

Over the two-week period a total of four interlinked channels will be produced. If successful, LIVE could change the way we view live events such as the Olympics, the FIFA World Cup or a political election - on a permanent basis.

Beyond the clear advantage of having fuller coverage of the event itself, those irritating moments of not knowing about the details of a sporting event (e.g. details about the contestants, the history behind it or, information on the venue) will be conveniently dispensed with by the power of this latest and pioneering broadcasting information technology.

For the first time it will be possible to serve the always diverse moods of viewers by simultaneously offering multiple points of view on one and the same live event.

For more information about the University of Bradford’s contribution to the LIVE project, contact Professor Jianmin Jiang on +44 (0) 1274 233695 or email J.Jiang1@Bradford.ac.uk

See a video explaining the LIVE project on their website: www.ist-live.org

Oliver Tipper | alfa
Further information:
http://www.ist-live.org

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>