Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bradford involved in Olympic TV revolution

02.07.2008
At this year's Olympic Games in Beijing, a European Union sponsored research project called LIVE will test a new set of TV production tools and content formats to “free the viewer from the single channel TV experience”.

LIVE is an integrated research project partially funded under the European Union's IST Sixth Framework Programme. It is being co-ordinated from the Fraunhofer Institute IAIS in Germany and involves a number of partner organisations across Europe, including the University of Bradford.

The LIVE system will make it possible to produce a national Olympic TV programme in which thematically interlinked channels are produced on-demand according viewer feedback and the unfolding live action.

In the time-critical production process of live broadcasting there is little time to search databases for new material so archival content is usually pre-selected. This places a constraint on the ability of the production team to respond to unforeseen events or even satisfy creative impulses during a live broadcast.

The innovation behind LIVE therefore is the ability to analyse, link and recommend content from multiple content sources in the spontaneous and fast moving environment of the live broadcast. During a live broadcast, the LIVE system automatically analyses and aligns content coming in from the multiple incoming streams and available archive material. Additionally, feedback coming in from the TV viewers (switching behaviour and on-screen polls) is also analysed. The meaningful connections between viewer preferences and analysed video material are then processed in real-time and fed into the control room to guide the production process.

Researchers led by Jianmin Jiang, Professor of Digital Media in the University of Bradford’s School of Informatics, are playing leading roles in developing computerised algorithms for automatic and online video content processing and analysis over the incoming camera streams, and thus providing a range of computer-based tools for content producers to deliver the LIVE project concepts and objectives.

Technologies innovated by Bradford researchers include:

• compressed domain shot cut detections to divide video sequences automatically into content-consistent sections to enable content analysis on both temporal and spatial basis

• semantics and metadata extraction via approaches of low-level feature based content processing such as close-up detection, pattern recognition such as face recognition, and machine learning such as SVMs

• video summarization via V-unit detection and adaptive clustering approaches;

• sport video annotation via multiple SVM learning and classifications.

Professor Jiang said: “Reporting real-time live action such as the Olympic Games has always involved a unique style of broadcasting. It involves capturing live action as it unravels, where anything can and so often does happen. However, despite today’s advances in technology and interactive TV formats it remains a single channel broadcast approach. Bradford’s strength is computerised video processing directly in compressed domain, providing extremely fast and low-cost technologies for live video production.

“LIVE is a very important opportunity for us to bridge the gap between computer scientists and media content producers. Research expertise within the School of Informatics has a huge contribution to make to this project and we are very excited to be involved.”

The LIVE production system will be tested at ORF (Austrian Broadcasting Corporation) during the Beijing Olympic Games. A total of 500 Austrian households will be provided with the necessary set-top boxes to view and interact with the "LIVE Olympic Show".

Over the two-week period a total of four interlinked channels will be produced. If successful, LIVE could change the way we view live events such as the Olympics, the FIFA World Cup or a political election - on a permanent basis.

Beyond the clear advantage of having fuller coverage of the event itself, those irritating moments of not knowing about the details of a sporting event (e.g. details about the contestants, the history behind it or, information on the venue) will be conveniently dispensed with by the power of this latest and pioneering broadcasting information technology.

For the first time it will be possible to serve the always diverse moods of viewers by simultaneously offering multiple points of view on one and the same live event.

For more information about the University of Bradford’s contribution to the LIVE project, contact Professor Jianmin Jiang on +44 (0) 1274 233695 or email J.Jiang1@Bradford.ac.uk

See a video explaining the LIVE project on their website: www.ist-live.org

Oliver Tipper | alfa
Further information:
http://www.ist-live.org

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>