Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optics Express focus issue highlights research to increase Internet bandwidth capacity

Special issue on Space Multiplexed Optical Transmission features research from international teams at Bells Labs, Sumitomo Electric, OFS Labs, several universities

Optical fiber communication is the backbone for the telecommunications infrastructure that supports the Internet. Fueled by emerging bandwidth-hungry applications and increases in computer processing power, Internet traffic has sustained exponential growth and this trend is expected to continue for the foreseeable future.

To highlight research being carried out to ensure that the capacity of fiber optic communication systems can handle this rapidly increasing demand, and thus to address the Internet capacity crunch, the editors of the Optical Society's (OSA) open-access journal Optics Express, today published a special Focus Issue on Space Multiplexed Optical Transmission. The issue is organized and edited by Guifang Li of the University of Central Florida and Xiang Liu of Bell Labs, Alcatel-Lucent.

The Focus Issue describes different approaches to increase the information carrying capacity of optical fibers. One of these, Space-Division Multiplexing (SDM), uses fibers with seven cores, rather than a single one. By using all seven cores, seven independent signals can be carried, and the fiber capacity can thus, in principle, be increased seven-fold. In other approaches, such as Mode-Division Multiplexing (MDM) a single core carries multiple information channels, each of which is associated with a different physical shape of the light field, also increasing the fiber capacity.

According to Liu, "Our goal in producing this focus issue was to provide a comprehensive survey of the state-of-the-art research activities in multiplexed transmission, which holds potential for addressing the challenges of capacity growth in optical communications."

"We hope this collection will stimulate future research on this subject to address the remaining fundamental and practical challenges, potentially enabling dramatic capacity growth in future optical communication systems," said Li.


It is well known that the capacity of a communication channel is constrained by the Shannon limit. In optical fiber communication, fiber nonlinearity imposes an additional limit in the high power or high signal-to-noise ratio (SNR) regime. Digital coherent detection increases optical signal tolerance to linear noise such as amplified spontaneous emission noise, and sometimes nonlinear phase noise. However, the single-channel capacity increase scales logarithmically with the increase in SNR. This logarithmical single-channel capacity scaling ultimately will not be able to support exponential traffic growth. While it might be impossible to provide exponential single-channel capacity growth in optical communication, multiplicative growth in optical communication capacity has satisfied traffic demand in the past, especially when dense wavelength-division multiplexing (DWDM) with a multiplicative factor on the order of 100 was invented. As today's DWDM coherent optical communication technology has already taken advantage of all degrees of freedom of a light wave in a single-mode fiber, namely frequency, polarization, amplitude, and phase, further multiplicative growth has to explore new degrees of freedom. MDM using few-mode fibers (FMF) and SDM using multi-core fibers (MCF) have emerged as promising candidates for the next multiplicative capacity growth for optical communication. This Optics Express Focus Issue features the state-of-the-art research activities in MDM and SDM aimed at order-of-magnitude capacity growth in future optical communication systems.

Key Findings

The following papers are some of the highlights of the Optics Express Focus Issue on Space Multiplexed Optical Transmission. All are included in Volume 19, issue 17 and can be accessed online at

A paper from B. Zhu et al. of OFS Labs and Bell Labs reports a transmission capacity of 112 Tb/s over a distance of 76.8-km using SDM in a 7-core fiber using SDM and DWDM in the C and L bands. Each of the 7 cores carried 160 polarization-division multiplexed quadrature phase-shift keying (PDM-QPSK) channels at 107-Gb/s on a 50-GHz grid, resulting in an aggregate spectral efficiency of 14 b/s/Hz. The impact of the inter-core crosstalk was experimentally investigated and the system implications of core-to-core crosstalk on long-haul transmission were discussed. pp. 16665-16671 (

T. Hayashi et al. from Sumitomo Electric Industries report an ultra-low-crosstalk MCF that is suitable for ultra-long-haul transmission. A remarkably low inter-core crosstalk level of below -62 dB was achieved in a 17.4-km 7-core fiber, by using a trench-assisted index profile. A transmission capacity of 109 Tb/s was recently demonstrated by using SDM and DWDM with this ultra-low-crosstalk MCF. pp. 16576-16592 (

S. Randel et al. from Bell Labs and OFS labs present the transmission of three 112-Gb/s PDM-QPSK signals over the fundamental mode (LP01) and two orthogonal LP11 modes of a 33-km FMF. 6x6 MIMO processing was used to achieve the separation of the three spatial modes and the two polarizations of the transmitted signals. These experiments show the feasibility of scaling capacity using MDM in FMF in combination with MIMO signal processing. pp. 16697-16707 (

K. S. Abedin et al. from OFS Labs have demonstrated a multicore Erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in its 7 cores. The pump and signal were coupled to individual cores of the MC-EDF using two tapered fiber bundled (TFB) couplers. The average gain achieved in the MC-EDF amplifier was 30 dB, and noise figure was less than 4 dB. pp. 16715-16721 (

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>