Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew U. researchers shed light on the brain mechanism responsible for processing of speech

10.08.2009
Research findings may contribute to improvement of voice recognition technologies

Researchers from the Hebrew University of Jerusalem have succeeded for the first time in devising a model that describes and identifies a basic cellular mechanism that enables networks of neurons to efficiently decode speech in changing conditions.

The research may lead to the upgrading of computer algorithms for faster and more precise speech recognition as well as to the development of innovative treatments for auditory problems among adults and young people.

Our brain has the capability to process speech and other complex auditory stimuli and to make sense of them, even when the sound signals reach our ears in a slowed, accelerated or distorted manner.

However, the neuronal mechanisms that enable our brain to perceive a word correctly, for example, that is pronounced in different ways by different speakers or to understand a heavy accent, was a mystery to scientists until now.

Research associate Dr. Robert Gütig and Prof. Haim Sompolinsky of the Edmond and Lily Safra Center for Brain Sciences at the Hebrew University have succeeded in describing a cellular process by which sensory neurons in the brain can automatically adjust their perceptual clocks and thus correct large temporal variations in the rate of sounds and speech that arrive from the environment.

According to their findings, which were recently published in the PLoS Biology journal, the bio-physical mechanism that exists in our brain enables single nerve cells in the cerebral cortex to perform word identification tasks almost perfectly.

The understanding of the process of speech decoding and the possibilities of its implementation in technology – by the development of neural network algorithms for the identification and processing of various patterns of sound signals – could lead to the significant upgrading of speech recognition technology in communications and computing, for instance in telephone voice dialing or in voice and sound monitoring devices.

The technology has been patented by Yissum, the Hebrew University's technology transfer company.

Rebecca Zeffert | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>