Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Disruption-free videos

Standardized video coding techniques still have their snags – digitally transmitted images are not always disruption-free. An extension of the H.264/AVC coding format allows to protect the most important data packets to ensure they arrive safely at the receiver.

Your favorite detective series has just reached its most exciting moment when it happens: The thunderstorm raging outside interferes with the digital image on your TV. The picture keeps getting stuck – and the murderer goes undetected. The reason for such interferences is that crystal-clear image quality, such as in HDTV, involves an increased volume of data.

But the data packets are at risk during transmission, as information can be lost along the way. This poses a serious problem for developers of video coding techniques. Once the data packets are lost, it is very difficult to correct the error. Researchers at the Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, HHI in Berlin are therefore working to improve standardized video coding techniques such as the H.264/AVC format, which is used by the YouTube video portal and Apple’s QuickTime player, for example.

If an Internet node is overloaded, for instance, data packets are randomly discarded during transmission. This causes a jerky picture. “Our extension of the H.264/AVC coding format protects the most important parts of the data packets so that they can be broadcast without error,” says Dr. Thomas Wiegand, head of department at the HHI and a professor at the Berlin Institute of Technology. The data packets in question are precisely those required for a disruption-free video. The researchers use additional data to protect them. “If, say, two video packets need to be transmitted, we equip an additional data packet with the result of the sum of the bytes in the two video data packets. If any of these three data packets gets lost, we can deduce the content of the original two,” explains Wiegand. The new coding format makes it possible to restrict these additional data packets to the most important part of the video. In this way, if anything does get lost, only the quality will fluctuate.

The extension of the H.264/AVC format is called SVC (scalable video coding). It runs on all H.264/AVC-compatible devices, so customers do not need to buy new ones. Moreover, it works independently of the overall data volume and can ensure fault-free reception even for high-resolution TV. SVC standardization has now been completed and will come into use in various applications: for HDTV, the Internet, video conferences, surveillance technology or mobile radio. The researchers will present the new extended format at the IBC conference in Amsterdam (Hall 8, Stand 381) on September 12 through 16.

Prof. Dr. Thomas Wiegand | alfa
Further information:

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>