Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step up in wavelength

26.09.2013
A device that can manipulate radiofrequency signals could soon reduce the size of short-distance communication systems

Millimeter waves are a type of radiofrequency electromagnetic radiation with wavelengths between 0.1 and 10 millimeters long. Because they are susceptible to absorption by water in the atmosphere, they travel short distances only.


The system-on-package component for converting millimeter waves operates at the highest frequency of any device of its type.
Copyright : © 2013 A*STAR Institute of Microelectronics

Despite this limitation, their short wavelength makes them a useful technology for small-distance applications. Examples include short-range, secure wireless communication and automotive-radar technology, which lets self-driving cars sense their environment.

Electronic components that can manipulate millimeter waves are vital for realizing this potential in commercial applications. Specifically, it is important to change the wavelength of such waves from, for example, one that is optimal for sending information across short distances to one that is more easily processed electronically.

Rui Li and co©workers at the A*STAR Institute of Microelectronics, Singapore, have designed and fabricated an electronic module that can convert a millimeter wave from one wavelength to another. The device, called a subharmonic passive mixer (see image), mixes an incoming millimeter wave that has a wavelength of 2.2 millimeters with a local source of 4.3-millimeter waves to generate a 1.1-millimeter signal. A signal of this wavelength means that the device operates at a frequency of 273 gigahertz; that is, 273 billion oscillations per second. Operation at such a high frequency allows a large number of potential transmission channels.

Importantly, the researchers¡¯ device is based on a technology called ¡®system-on-package¡¯, where the components are attached to a package. ¡°It is the first time that [an on-package] converter has operated at such a high frequency,¡± says Li. In contrast, conventional electronic devices, such as laptops and phones, are miniaturized by combining hundreds of electrical devices on a silicon chip. This approach becomes problematic when dealing with electronic components that operate at radiofrequencies. The low electrical resistivity of silicon results in an energy loss that degrades the overall system performance. The manufacturing cost is also high because the components occupy a large area.

The device developed by Li and her co-workers comprised three stacked thin films of metal, and the choice of material to separate these layers was crucial to it¡¯s efficient operation. The researchers used benzocyclobutene ¡ª a polymer that, unlike silicon, is known to have good electrical performance, even in the millimeter-wave region. Thorough electrical testing confirmed the high-performance of their design.

¡°We are currently in the process of designing and implementing numerous similar types of millimeter-wave passive components in various types of package,¡± says Li. ¡°We hope this will reduce the chip area as compared to ¡®on-chip¡¯-based approaches.¡±

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Associated links
Li, R., Lim, T. G. & Ho, S. W. 273-GHz 2X subharmonic up-conversion mixer for system-on-package applications. IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 1980¨C1984 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>