Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Temporal cloaking' could bring more secure optical communications

06.06.2013
Researchers have demonstrated a method for "temporal cloaking" of optical communications, representing a potential tool to thwart would-be eavesdroppers and improve security for telecommunications.

"More work has to be done before this approach finds practical application, but it does use technology that could integrate smoothly into the existing telecommunications infrastructure," said Purdue University graduate student Joseph Lukens, working with Andrew Weiner, the Scifres Family Distinguished Professor of Electrical and Computer Engineering.

Other researchers in 2012 invented temporal cloaking, but it cloaked only a tiny fraction - about a 10,000th of a percent - of the time available for sending data in optical communications. Now the Purdue researchers have increased that to about 46 percent, potentially making the concept practical for commercial applications.

While the previous research in temporal cloaking required the use of a complex, ultrafast-pulsing "femtosecond" laser, the Purdue researchers achieved the feat using off-the-shelf equipment commonly found in commercial optical communications.

Findings are detailed in a research paper appearing in the advance online publication of the journal Nature at 1 p.m. Eastern time Wednesday (June 5). The paper was authored by Lukens, senior research scientist Daniel E. Leaird and Weiner.

The technique works by manipulating the phase, or timing, of light pulses. The propagation of light can be likened to waves in the ocean. If one wave is going up and interacts with another wave that's going down, they cancel each other and the light has zero intensity. The phase determines the level of interference between these waves.

"By letting them interfere with each other you are able to make them add up to a one or a zero," Lukens said. "The zero is a hole where there is nothing."

Any data in regions where the signal is zero would be cloaked.

Controlling phase allows the transmission of signals in ones and zeros to send data over optical fibers. A critical piece of hardware is a component called a phase modulator, which is commonly found in optical communications to modify signals.

In temporal cloaking, two phase modulators are used to first create the holes and two more to cover them up, making it look as though nothing was done to the signal.
"It's a potentially higher level of security because it doesn't even look like you are communicating," Lukens said. "Eavesdroppers won't realize the signal is cloaked because it looks like no signal is being sent."

Such a technology also could find uses in the military, homeland security or law enforcement.

"It might be used to prevent communication between people, to corrupt their communication links without them knowing," he said. "And you can turn it on and off, so if they suspected something strange was going on you could return it to normal communication."

The technique could be improved to increase its operational bandwidth and the percentage of cloaking beyond 46 percent, he said.

The technology is reminiscent of recent advances in cloaking using new "metamaterials," assemblies that contain features, patterns or elements such as tiny antennas or alternating layers of oxides that enable an unprecedented control of light and that could make possible a cloak of invisibility. The temporal cloaking, however, does not require metamaterials, just commercially available phase modulators and optical fibers. The effect is called temporal cloaking because it hides data being transmitted over time, as opposed to "spatial" cloaking to hide physical objects.

The project was supported in part by the National Science Foundation and the U.S. Naval Postgraduate School under the National Security Science and Engineering Faculty Fellowship program. Financial support also came from the U.S. Department of Defense through a National Defense Science and Engineering Graduate Fellowship.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Andrew Weiner, 765-494-5574, amw@purdue.edu

Joseph M. Lukens, jlukens@purdue.edu

Related website:
Ultrafast Optics and Optical Fiber Communications Laboratory

Note to Journalists: An electronic copy of the research paper is available by contacting Rebecca Walton (Nature, London)
 +44 20 7843 4502, r.walton@nature.com, or in North America: Neda Afsarmanesh (Nature, New York)
 +1 212 726 9231, n.afsarmanesh@us.nature.com

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>