Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cebit 2012: The wireless bicycle brake, a prototype on an exciting mission

24.02.2012
At this time, wireless networks are able to brake just one bike, but in the future, the technical elements will be further developed to regulate entire trains as they travel over the lines.

In view of that fact, computer scientists at Saarland University are designing mathematical calculations to check such systems automatically. The scientists will present their results at stand F34 in hall 26 at the computer fair Cebit. The trade show takes place in Hanover, Germany from March 6 to 10.


Holger Hermanns, computer science professor at Saarland University, confirmed the reliability of his wireless bicycle brake through mathematical calculations. Foto: Angelika Klein

Professor Holger Hermanns, who holds the chair of Dependable Systems and Software, and who developed the wireless bicycle brake together with his group, explains: “Wireless networks are never a fail-safe method. That’s a fact that’s based on a technological background.” Nonetheless, the trend is to set up wireless systems that, like a simple bicycle brake, have to function all the time. “In the field of the future European Train Service, for example, concrete plans already exist,” Hermanns reports. Furthermore, he says that train and airplane experiments are far too sophisticated, and could even endanger the life of human beings in case of malfunction.

Therefore, the Saarland computer scientist’s mathematical methods should now verify the correct function and interaction of the components automatically. “The wireless bicycle brake gives us the necessary playground to optimize these methods for operation in much more complex systems,” Hermanns adds.

Therefore, his research group examines the brake prototype with algorithms that normally are used in control systems for aircraft or chemical factories. As a result, they found out that the brake works with 99.9999999999997 percent reliability. “This implies that out of a trillion braking attempts, we have three failures,” Hermanns explains and concludes: “That is not perfect, but acceptable.”

To brake with the wireless brake, a cyclist needs only clench the rubber grip on the right handle. The more tightly the grip is clenched, the harder the disk brake on the front wheel works. It seems as if a ghost hand is in play, but a combination of several electronic components enables the braking. Integrated in the rubber grip is a pressure sensor, which activates a sender if a specified pressure threshold is crossed. The sender is integrated in a blue plastic box which is the size of a cigarette packet and is attached to the handlebar.

Its radio signals are sent to a receiver attached at the end of the bicycle’s fork. The receiver forwards the signal to an actuator, transforming the radio signal into the mechanical power by which the disk brake is activated. The electrical energy is supplied by a battery, which is also attached to the bicycle’s fork.

To enhance reliability, there are additional senders attached to the bicycle. These repeatedly send the same signal.

Its current configuration enables the cruiser bike to brake within 250 milliseconds. This means that at a speed of 30 kilometers per hour, the cyclist has to react two meters before reaching the dangerous situation. But the Saarland University computer scientists are not satisfied with just this functionality. “It is not difficult to integrate an anti-lock braking system and traction control. That takes only a few adjustments,” Hermanns explains.

Researching the wireless bicycle brake was funded within the special research field “Automatic Verification and Analysis of Complex Systems (AVACS)” by the German Research Foundation. Besides Holger Hermanns, several researchers from Saarland University are involved. These are Professors Sebastian Hack, Markus Bläser, Reinhard Wilhelm, Jan Reineke, Bernd Finkbeiner and Verena Wolf.

Professor Kurt Mehlhorn and Christoph Weidenbach of the Max-Planck-Institute for Informatics in Saarbrücken are involved in the project, too. In 2011, the Research Foundation Group approved about 8.7 million euro, and about 3.5 million inure to the benefit of the Saarland research work. Since 2004, the special research group has been sponsored with approximately 26 million euros, and 9.5 million went to the computer scientists at Saarland University.

Thorsten Mohr | Universität des Saarlandes
Further information:
http://www.avacs.org/
http://www.mpi-sws.org/~vahldiek/papers/wowmom.pdf
http://depend.cs.uni-saarland.de/

More articles from CeBIT 2012:

nachricht UDE at the CeBIT fair: Protecting huge National Parks
07.03.2012 | Universität Duisburg-Essen

nachricht Cebit: Automated stress testing for Web 2.0 applications helps developers find programming errors
27.02.2012 | Universität des Saarlandes

All articles from CeBIT 2012 >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
More VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE