Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Untiring dedication to solar energy

10.09.2010
HZB researcher honoured with solar award for his successful research

Prof. Dr. Hans-Werner Schock, department head and spokesman for Solar Energy Research at Helmholtz-Zentrum Berlin (HZB), received the prestigious “Becquerel Prize” at the 25th “European Photovoltaic Solar Energy Conference and Exhibition” in Valencia.

The EU Commission honoured the HZB scientist for his life’s work in the field of photovoltaics. The award ceremony took place as a highlight of the European photovoltaics conference which was held this year together with the 5th “World Conference on Photovoltaic Energy Conversion”.

Hans-Werner Schock received the “Becquerel Prize” following his plenary lecture on “The Status and Advancement of CIS and Related Solar Cells”. The chairman was Daniel Lincot, head of solar energy research at the Ecole Nationale Supérieure de Chimie de Paris (ENSCP).

Prof. H.-W. Schock was distinguished by the committee for his outstanding performance in the field of solar energy technology and the development of thin-film solar cells. The first pioneer tests on chalcopyrite-based solar cells took place under his direction as early as 1980, and were to make solar energy more efficient and more competitive.

Such solar cells are made of copper-indium-sulphide (CIS) or copper-indium-gallium-selenide (CIGSe), for example. At present, Hans-Werner Schock’s group is researching new material combinations of abundant, environmentally friendly chemical elements and is continuing to refine solar cells based on these materials. The solar cells developed at HZB under Hans-Werner Schock’s leadership hold several efficiency records: CIS cells in the high-voltage range (12.8%), flexible cells made from plastics (15.9%) and conventional CIGSe cells (19.4%). The aim is for “solar cells to be integrated into buildings, for example, no longer as an investment, but as a matter of course,” says Schock.

Scientific director for Research Field Energy at HZB, Prof. Dr. Wolfgang Eberhardt, is delighted about the award: “With its research on thin-film solar cells, HZB has made it its duty to develop the technology for our future energy supply. Mr. Schock’s work is a major contribution to this. We are delighted about the worldwide recognition his work has found, and congratulate Mr. Schock on receiving this award.”

Hans-Werner Schock, born in 1946 in Tuttlingen, studied electrical engineering at University of Stuttgart and earned his doctorate at the Institute of Physical Electronics, where he later became scientific project leader of the research group “Polycrystalline Thin-Film Solar Cells”. Since 2004, he has worked at HZB as department head of the Institute for Technology. He is author and co-author of more than 300 publications and has submitted and been involved in more than ten patents in the field of solar energy technology.

The “Becquerel Prize” was first awarded in 1989 on the occasion of the 150th anniversary of Becquerel’s classic experiment on the description of the photovoltaic effect. With it, French physicist Alexandre Edmond Becquerel laid the foundation for the use of photovoltaics.

Dr. Ina Helms | idw
Further information:
http://www.helmholtz-berlin.de/
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13152&sprache=en&typoid=1

More articles from Awards Funding:

nachricht Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Inspired by nature - scalable chemical factory due to photomicroreactors
11.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>