Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts Engineering Professor Wins NSF Career Award for Thermophotovoltaic Research

08.04.2011
Assistant Professor of Electrical and Computer Engineering Tom Vandervelde has been awarded an early-career award from the National Science Foundation for promising research on the conversion of heat to electricity.

Vandervelde, the John A. and Dorothy Adams Faculty Development Professor, will use the $400,000, five year award to continue his studies in thermophotovoltaics (TPVs)—cells that convert thermal energy, or heat, into electricity. His research has implications for a new class of green technologies.

"Right now, heat sources have to be in excess of 1500 degrees Celsius in order for TPVs to work efficiently," says Vandervelde. His goal is to make TPVs more efficient at lower temperatures, and ultimately, convert heat to electricity at a cool 37 degrees Celsius—or the temperature of the human body. This could have potential use in medical devices, such as a pacemaker that keeps a charge from the electricity generated by one's own body heat.

In a TPV system, when a photon—an energy packet of light or heat—strikes the TPV a charge carrier pair is created that generates an electron and subsequently electricity.

But if the charge carriers recombine, a photon is re-emitted and is lost as light or heat. "Every time that recombination happens, that's less energy you get out and in the end that lowers your overall efficiency," says Vandervelde.

By using recent advances in infrared photodetectors, Vandervelde will investigate the use of a novel photodiode structure that contains a barrier which prevents recombination of the charge carriers. This allows the particles to flow out of the cell as unimpeded electrical current.

"By putting the barriers in, we end up separating where those charge carriers are so they end up not spending a lot of time near each other," says Vandervelde. "It makes recombination far less likely to occur, which means that you end up getting out a lot more current for the same amount of light coming in."

More efficient TPVs could also be used to recoup the heat lost to keep massive computer data server farms cool. "The realization of cooler-running, more energy-efficient, server farms—which occupy 20% of energy consumption off the energy grid in some locations— alone will change the very nature of our nation's energy needs in a positive way," he says.

"The ability to harness the ubiquitous waste heat represents a significant jump forward to our becoming a truly green society," Vandervelde says.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Tufts University School of Engineering is uniquely positioned to educate the technological leaders of tomorrow. Located on Tufts' Medford/Somerville campus, the School of Engineering offers the best of a liberal arts college atmosphere coupled with the intellectual and technological resources of a world-class research-intensive university. Its goals are to educate engineers who are committed to the innovative and ethical application of technology to solve societal problems, and to be a leader among peer institutions in targeted areas of interdisciplinary research and education. Strategic areas of emphasis include programs in bioengineering, sustainability, and innovation in engineering education.

Alexander Reid | Newswise Science News
Further information:
http://www.tufts.edu

Further reports about: Career Ferchau Engineering Merit Award TPV Thermophotovoltaic

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>