Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA: a vicious pathway to cancer ?

14.08.2017

According to the current doctrine, cancer cells develop due to mutations in genomic DNA. But could it be also caused also by faulty RNA molecules? A number of clues are pointing to this surprising hypothesis. Rolf Marschalek from the Institute of Pharmaceutical Biology at Goethe University Frankfurt will receive 1.25 million Euro from the Deutsche Forschungsgemeinschaft (DFG) to follow up these cues. Through its Reinhart Koselleck projects the DFG funds exceptionally innovative and – and in a positive sense - high-risk research.

For many years Rolf Marschalek has been investigating gene mutations that cause different kinds of leukemia. One particularly common mutation is a chromosomal translocation.

It occurs when bits of two different chromosomes break off at the same time and the cell’s repair programme makes a mistake and fuses wrong chromosome pieces. This results usually in the formation of so-called "fusion genes" that are transcribed into fusion mRNAs. As a result of such a chromosomal translocation the encoded fusion proteins are causing cancer.

It is striking however, that certain translocations occur frequently although on a purely statistical level a much wider range of chromosome breaks would be possible.

... more about:
»DNA »RNA »RNAs »chromosomal translocation »genes »leukemia

An example is the Philadelphia chromosome, a shortened chromosome 22, and the associated fusion protein BCR-ABL. This is the most common cause of chronic myelogenous leukemia. Surprisingly, BCR-ABL transcripts are also present in healthy people who do not have the Philadelphia chromosome.

A possible explanation for this observation is a new finding about transspliced fusion RNA molecules that might affect the outcome of DNA repair processes. Most of the time DNA is safely and compactly packaged within chromatin and cannot be copied.

So it could be more economical for cells to use RNA copies for the repair of DNA double strand breaks, as the RNA copies can be produced in larger numbers during the short phase when genes are available for copying.

Indeed, RNAs not coding for proteins occur in cells in great numbers, and errors that occur during the process of transcription may lead to rare RNAs molecules carrying different types of mutations. Rolf Marschalek suspects that these faulty RNAs arise in the following way:

„Usually chromatin loops with active transcribable genes are located on the outside of chromosomes. Loops from different chromosomes are jointly transcribed by the transcription factories of the cell. Interestingly genes are transcribed together that have been identified in cancer cells as partner genes in chromosomal translocations.” It remains unclear why this is the case, but they have identified in healthy cells all types of fusion RNA transcripts that are know from chromosomal translocations. "Faulty transcripts are always preceeding the chromosomal translocations in the genomic DNA", he says.

Over the next five years, thanks to his Koselleck project funding, Rolf Marschalek will be able to test his hypothesis that RNA has also the function to serve as blueprint for the repair of DNA errors and that this is a vicious pathway to cancer. The CRISPR/Cas technology, which has made it much easier to alter genes experimentally, will play an important role in this work.

Further information: Prof. Dr. Rolf Marschalek, Institute for Pharmaceutical Biology Campus Riedberg, Tel.: ++49 69 798 29647, rolf.marschalek@em.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

Further reports about: DNA RNA RNAs chromosomal translocation genes leukemia

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>