Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Energy and Mobility: InVentus Ventomobile coming in first – Stuttgart wind racer succeeds at „Aeolus Race“

28.08.2008
The solely wind-driven Ventomobile constructed by the InVentus team, a team of some 20 Stuttgart University students of Aerospace Engineering, came in first at the „Aeolus Race“ in the Dutch town of Den Helder last Friday

Racing the extremely stylish and lightweight three-wheeler, the vehicles of five European universities and research centres had difficulties to catch up. For their “innovative design” and their “PR” work, the InVentus team were also awarded prizes .

The ECN-impulse built by the Energy research Centre of the Netherlands (ECN) came in second. The Flensburg University of Applied Sciences won the third prize with their very solid but slow Headwind Tricycle. In this first time ever race the participating teams were challenged to drive directly into the wind, without tacking. During the preliminary races, the Stuttgart Ventomobile had already proven to be the most lightweight and most efficient vehicle among the contestants when, with its 130 kg, it succeeded in racing at 64% of the wind speed directly against the wind. From then on it was considered a serious contender for the win.

„Winning this prize was a great reward for our intense construction work during the last few months“, Alexander Miller is thrilled. Cooperating with some 20 students, he and Jan Lehmann developed and constructed the vehicle from Summer 2007 onwards with the support of the Endowed Chair of Wind Energy at the University of Stuttgart. The students constructed the drive shaft and the rotor blades of the three-wheeler utilising the know-how at the Stuttgart University Department of Composites and Lightweight Construction. The experience of the students and the staff at the Institute of Aero- and Gasdynamics also helped greatly in optimizing the vehicle. The carbon-fibre-built tower can be turned into the wind, and through pitching the blades can be adjusted optimally to the wind speed. Via two bicycle gearboxes and a bicycle chain the power then is transmitted to the axle.

Matthias Schubert, Chief Technical Officer of the main sponsor REpower Systems AG, applauds the integration of this project into the coursework of the students: „The achievement of managing a big team over many months, and even making select construction tasks part of undergraduate teaching cannot be estimated highly enough! The enthusiasm the students show in renewable energies and the development of innovative solutions should serve the industry as an example for the development of new technologies.“

Prof. Martin Kühn, head of the Endowed Chair of Wind Energy and mentor of the InVentus team, is pleased about the success of his students. “The expert knowledge the students acquired during this project constitute an unique experience which will prove extremely helpful in their future careers. The Ventomobile and its competitors represent excellent and creative examples of intelligent uses of wind energy“, he points out, at the same time promoting a better use of renewable energies.

Ursula Zitzler | alfa
Further information:
http://www.uni-stuttgart.de
http://www.inventus.uni-stuttgart.de/

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>