Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Energy and Mobility: InVentus Ventomobile coming in first – Stuttgart wind racer succeeds at „Aeolus Race“

28.08.2008
The solely wind-driven Ventomobile constructed by the InVentus team, a team of some 20 Stuttgart University students of Aerospace Engineering, came in first at the „Aeolus Race“ in the Dutch town of Den Helder last Friday

Racing the extremely stylish and lightweight three-wheeler, the vehicles of five European universities and research centres had difficulties to catch up. For their “innovative design” and their “PR” work, the InVentus team were also awarded prizes .

The ECN-impulse built by the Energy research Centre of the Netherlands (ECN) came in second. The Flensburg University of Applied Sciences won the third prize with their very solid but slow Headwind Tricycle. In this first time ever race the participating teams were challenged to drive directly into the wind, without tacking. During the preliminary races, the Stuttgart Ventomobile had already proven to be the most lightweight and most efficient vehicle among the contestants when, with its 130 kg, it succeeded in racing at 64% of the wind speed directly against the wind. From then on it was considered a serious contender for the win.

„Winning this prize was a great reward for our intense construction work during the last few months“, Alexander Miller is thrilled. Cooperating with some 20 students, he and Jan Lehmann developed and constructed the vehicle from Summer 2007 onwards with the support of the Endowed Chair of Wind Energy at the University of Stuttgart. The students constructed the drive shaft and the rotor blades of the three-wheeler utilising the know-how at the Stuttgart University Department of Composites and Lightweight Construction. The experience of the students and the staff at the Institute of Aero- and Gasdynamics also helped greatly in optimizing the vehicle. The carbon-fibre-built tower can be turned into the wind, and through pitching the blades can be adjusted optimally to the wind speed. Via two bicycle gearboxes and a bicycle chain the power then is transmitted to the axle.

Matthias Schubert, Chief Technical Officer of the main sponsor REpower Systems AG, applauds the integration of this project into the coursework of the students: „The achievement of managing a big team over many months, and even making select construction tasks part of undergraduate teaching cannot be estimated highly enough! The enthusiasm the students show in renewable energies and the development of innovative solutions should serve the industry as an example for the development of new technologies.“

Prof. Martin Kühn, head of the Endowed Chair of Wind Energy and mentor of the InVentus team, is pleased about the success of his students. “The expert knowledge the students acquired during this project constitute an unique experience which will prove extremely helpful in their future careers. The Ventomobile and its competitors represent excellent and creative examples of intelligent uses of wind energy“, he points out, at the same time promoting a better use of renewable energies.

Ursula Zitzler | alfa
Further information:
http://www.uni-stuttgart.de
http://www.inventus.uni-stuttgart.de/

More articles from Awards Funding:

nachricht Muscle Growth in the Computer: International Team Wants to Unravel the Formation of Myofibrils
13.06.2018 | Technische Universität Dresden

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>