Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar study is sweetener for stem cell science

23.07.2008
Scientists at The University of Manchester are striving to discover how the body’s natural sugars can be used to create stem cell treatments for heart disease and nerve damage – thanks to a £370,000 funding boost.

All cells that make up the tissues of the body – such as skin, liver, brain and blood – are surrounded by a layer of sugars that coat the cells.

These sugars help the cells to know what type of cell they are and to respond to the other cells which surround them and the chemical messages that pass between cells.

Now Dr Catherine Merry from The School of Materials has been awarded a prestigious New Investigator Research Grant by the Medical Research Council (MRC) to investigate how different cells make different sugar types and to test out theories on how sugars can influence cell behaviour.

Dr Merry, who is leading the research, said: “At present, the way in which cells make these sugars is not well understood. From the little we do know, we believe isolated fragments of these sugars could be used to instruct cells to behave in particular ways.

“We also think we might be able to force cells to make one particular type of sugar and not another, thereby influencing the way in which that cell grows and interacts with other cells.

“This work is important in helping us understand how the sugars made by the cells change during this process.

“We also believe our research might suggest how sugars can be used to help embryonic stem cells grow in the lab – or how they can be instructed to become cell types which could be of use in human therapies to treat problems with nerve, heart muscle or blood cells.

“Although the prospect of creating cells from embryonic stem cells for use in humans is still a considerable time away, research such as ours helps move towards this goal.”

Dr Merry’s research will take place over three years in newly refurbished high-tech laboratories in the Materials Science Centre at the University.

A recent £300,000 upgrade to five laboratories has led to a new biomaterials and tissue engineering research facility being established – and has helped transform what was a very small interest in The School of Materials into a major focus of future work.

The upgrade, funded by the Royal Society Wolfson Foundation, is paving the way for cutting-edge research in the fields of molecular biology, stem cell culture and nanofabrication,

A new confocal microscope that produces high-resolution 3D optical images has also been installed thanks to £250,000 funding from the Biotechnology and Biological Sciences Research Council (BBSRC).

The new labs in the Materials Science Centre form part of the UK Centre for Tissue Regeneration, which was established in 2006 with a £1.5 million grant from the Northwest Regional Development Agency and involves researchers from across the university.

Alex Waddington | alfa
Further information:
http://www.manchester.ac.uk

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>