Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar study is sweetener for stem cell science

23.07.2008
Scientists at The University of Manchester are striving to discover how the body’s natural sugars can be used to create stem cell treatments for heart disease and nerve damage – thanks to a £370,000 funding boost.

All cells that make up the tissues of the body – such as skin, liver, brain and blood – are surrounded by a layer of sugars that coat the cells.

These sugars help the cells to know what type of cell they are and to respond to the other cells which surround them and the chemical messages that pass between cells.

Now Dr Catherine Merry from The School of Materials has been awarded a prestigious New Investigator Research Grant by the Medical Research Council (MRC) to investigate how different cells make different sugar types and to test out theories on how sugars can influence cell behaviour.

Dr Merry, who is leading the research, said: “At present, the way in which cells make these sugars is not well understood. From the little we do know, we believe isolated fragments of these sugars could be used to instruct cells to behave in particular ways.

“We also think we might be able to force cells to make one particular type of sugar and not another, thereby influencing the way in which that cell grows and interacts with other cells.

“This work is important in helping us understand how the sugars made by the cells change during this process.

“We also believe our research might suggest how sugars can be used to help embryonic stem cells grow in the lab – or how they can be instructed to become cell types which could be of use in human therapies to treat problems with nerve, heart muscle or blood cells.

“Although the prospect of creating cells from embryonic stem cells for use in humans is still a considerable time away, research such as ours helps move towards this goal.”

Dr Merry’s research will take place over three years in newly refurbished high-tech laboratories in the Materials Science Centre at the University.

A recent £300,000 upgrade to five laboratories has led to a new biomaterials and tissue engineering research facility being established – and has helped transform what was a very small interest in The School of Materials into a major focus of future work.

The upgrade, funded by the Royal Society Wolfson Foundation, is paving the way for cutting-edge research in the fields of molecular biology, stem cell culture and nanofabrication,

A new confocal microscope that produces high-resolution 3D optical images has also been installed thanks to £250,000 funding from the Biotechnology and Biological Sciences Research Council (BBSRC).

The new labs in the Materials Science Centre form part of the UK Centre for Tissue Regeneration, which was established in 2006 with a £1.5 million grant from the Northwest Regional Development Agency and involves researchers from across the university.

Alex Waddington | alfa
Further information:
http://www.manchester.ac.uk

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>