Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing estrogen from drinking water

25.06.2012
Bielefeld University students participating in MIT competition

A biological filter to remove estrogens from waste water and drinking water. The 15 Bielefeld students submitting this project to the ‘international Genetically Engineered Machine competition’ (iGEM) at the Massachusetts Institute of Technology (MIT) in Boston, USA are setting their sights high.

They are persuading internationally active companies and associations in the biotechnology and chemistry sector to contribute several ten thousands of Euros to cover the costs of entering this rapidly expanding global competition in synthetic biology. Since May, they have been spending their free time in the laboratory making new DNA building blocks, reproducing them, and producing enzymes. First results give reason for optimism.

The birth control pill is a widespread contraception method. However, large amounts of these modified estrogens leave the body again in urine. The conventional methods in sewage treatment plants are unable to treat this waste water sufficiently because the most frequently used estrogen ethinylestradiol is very difficult to break down. As a result, the hormone finds its way into rivers and lakes and also accumulates in drinking water with serious consequences for fish and other aquatic life. These range from reproductive and severe developmental disorders to the formation of female sexual characteristics in males.

The long-term consequences of increasing estrogen pollution for human beings are still largely unknown. Nonetheless, declining sperm counts and thereby increasing infertility in men living in industrial nations may well relate to this hormonal pollution. In addition, testicular and prostate cancers as well as osteoporosis (a reduction in bone density) could be a consequence of overly high concentrations of estrogen in the human body.

Bio filters from tree fungi

The goal of the Bielefeld iGEM team is to develop a biological filter in which certain enzymes (so-called laccases) break down the estrogen. Laccases are to be found in many organisms, and one of their properties is an ability to break down aromatic compounds – to which the estrogens belong. One source of particularly efficient laccases for this process is the turkey tail, a type of fungus that likes to grow on trees. The Bielefeld students are aiming to manufacture this enzyme economically and safely with the help of methods from synthetic biology. It should also be possible to extend the concept to other, in part poisonous and carcinogenic pollutants in drinking and waste water. The students already have one first success to announce: they have managed to isolate the genes of several laccases from various bacteria and have placed them in a standard, allowing further development. By the time of the European Jamboree in October, they want to have confirmed how the enzymes break down various substrates such as estrogens, pesticides, and pharmaceuticals and to be starting to immobilize them to filter materials.

Doing research in their own time

The Bielefeld team is composed of 15 students in the Genome-Based Systems Biology, Molecular Cell Biology, and Molecular Biotechnology degree programmes. Participating in the international competition means sacrificing many hours of their own free time, because the Bielefeld students have to carry out the research on top of their regular studies. Moritz Müller, a Master student of Molecular Biotechnology, explains why participating is nonetheless attractive: ‘Taking part in the competition gives you a chance to build up your own laboratory work while you are still studying, to pursue your own ideas, and even carry out your own project. These are the sort of challenges you will be facing in your professional career’. The students are being supported by Professor Dr. Alfred Pühler, Professor Dr. Erwin Flaschel, Dr. Jörn Kalinowski, and Dr. Christian Rückert from Bielefeld University’s CeBiTec (Center for Biotechnology).

International competition

The iGEM competition has been held every year since 2003 by the Massachusetts Institute of Technology (MIT) in Boston. Starting as an MIT study course, the number of competitors has grown rapidly from five teams in 2004 to more than 190 in the present year. All teams face the same task: taking their project from the idea across the laboratory work to gaining funding and communicating the findings. As Dr. Jörn Kalinowski stresses, ‘on the student level, the iGEM competition is the world championship in synthetic biology – and it shows what potential this still young field of research has in the near future. Over 2,000 brilliant young minds from the best universities throughout the world are competing with each other. As in the current Bielefeld project, they set themselves ecological and social challenges and often find unconventional solutions. At the same time, the iGEM competition draws the attention of international companies and associations to the students and their promising ideas. The competition has a worldwide impact‘. Because of the large numbers of competitors, continental preliminaries called jamborees have been organized since 2011. The European Jamboree will be held from 5–7 October in Amsterdam, Holland. It will decide which European teams get to travel to Boston, USA for the finals in November. Bielefeld University is competing for the third year in a row, and already succeeded in qualifying for Boston in 2010 and 2011.

For further information in the Internet, go to:
www.igem-bielefeld.de
Contact:
Robert Braun, Bielefeld University
iGEM-Team Bielefeld-Germany
Telephone: +49 162 3167424
Email: rbraun@igem-bielefeld.de

Sandra Sieraad | idw
Further information:
http://www.igem-bielefeld.de/

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>