Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneers in Alzheimer's Research: Research couple honored for its lifetime achievement

16.07.2013
Joint press release from the DZNE and the center of advanced european studies and research (caesar)

The U.S. Alzheimer's Association honors Dr. Eva-Maria Mandelkow and Prof. Dr. Eckhard Mandelkow from the German Center for Neurodegenerative Diseases (DZNE) and the caesar research center. The research couple receives the "2013 Khalid Iqbal Lifetime Achievement Award" for its role as pioneers in investigating the role of tau in Alzheimer's disease. The award ceremony was held yesterday (4: pm EST) within the framework of the "Alzheimer's Association International Conference (AAIC 2013)" in Boston (USA).

Eva-Maria and Eckhard Mandelkow have with their team achieved significant progress in Alzheimer's research in the course of their studies of a protein called "Tau". It is the basic substance of so-called neurofibrillary tangles (NFTs) - tiny protein deposits that accumulate in the brains of Alzheimer's patients. In the normal state, tau binds the cytoskeleton of neurons, in particular, it stabilizes the transport routes, along which their substances are transported within cells. Very early in Alzheimer's disease, the tau protein however changes, detaches itself from the cytoskeleton and agglomerates.

Since the 1990s, Eva-Maria and Eckhard Mandelkow have analyzed this protein. Longtime, the importance of the tau protein in Alzheimer’s disease has been underestimated. “At that time, no one would have thought that tau has such a significant role. However, we have pursued this approach because we have been interested in the role of Tau in nerve cells“ said Eva-Maria Mandelkow.

In pioneering studies, she and her husband have shown why the tau protein lumps in the brain and which sections of the molecular structure are thereby decisive. These findings allowed the couple to examine the consequences of the aggregation of the tau protein for the nerve cells in more detail. The result: Modifications of normal tau destroy the synapses of nerve cells. This is for example shown by studies on mice. If the protein accumulates in nerve cells, these mice perform worse in learning and memory tests than healthy animals and develop typical symptoms of Alzheimer's disease. In the event that the production of the toxic tau in the cells is stopped, the synapses regenerate and the mice recover from amnesia. This observation shows that the disease process is in principle reversible.

Eckhard Mandelkow: "I am of the opinion that an effective therapy against Alzheimer is possible. Crucial, in my view, is that the treatment is started early enough. Many of today's therapy approaches might have failed on account of the fact that they are applied too late. Since a disease is usually only diagnosed when typical symptoms such as memory dysfunctions are evident. At this time, the brain is however already severely damaged."

Recently, the couple has examined 200,000 substances, in order to find an active agent against the aggregation of tau. Some of these substances were found to be potential candidates for drugs. Their effect will now be further explored.

Prof. Dr. Eckhard Mandelkow studied physics and did his PhD at the Max Planck Institute for Medical Research in Heidelberg on the structure of virus proteins. In a subsequent research period at the Brandeis University (USA), he already dealt with proteins of the cytoskeleton and then continued this line of research. Then he focused on the structure and function of proteins of the nerve cells, especially of motor proteins, tau proteins and their pathological changes during the neurodegeneration. He is the head of the working group "Structural principles of neurodegeneration" at the DZNE/caesar in Bonn.

Dr. Eva-Maria Mandelkow studied medicine, worked for several years in the clinic and then pursued a career in fundamental research. She received her PhD at the Max Planck Institute for Medical Research in Heidelberg for her work in muscle physiology. This was followed by research periods at the Brandeis University (USA), the Scripps Research Institute (USA) and at the MRC Laboratory in Cambridge (UK), where she dealt with proteins of the cytoskeleton. Eva-Maria Mandelkow heads the working group "Cell and animal models of neurodegeneration" at the DZNE/caesar in Bonn.

Contact

Dr. Eva-Maria und Prof. Dr. Eckhard Mandelkow DZNE, Bonn and caesar research center
Tel.: +49 228/43302-688
E-Mail: Eva.Mandelkow@dzne.de / Eckhard.Mandelkow@dzne.de
Dr. Dirk Förger
Head of Press and Public Relations
DZNE, Bonn
Tel.: +49 228/43302-260
E-Mail: presse@dzne.de
Dr. Jürgen Reifarth
Head of Press and Public Relations
caesar research center
Tel.: +49 228/9656-107
E-Mail: juergen.reifarth@caesar.de

Sonja Jülich-Abbas | idw
Further information:
http://www.dzne.de

More articles from Awards Funding:

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>