Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneers in Alzheimer's Research: Research couple honored for its lifetime achievement

16.07.2013
Joint press release from the DZNE and the center of advanced european studies and research (caesar)

The U.S. Alzheimer's Association honors Dr. Eva-Maria Mandelkow and Prof. Dr. Eckhard Mandelkow from the German Center for Neurodegenerative Diseases (DZNE) and the caesar research center. The research couple receives the "2013 Khalid Iqbal Lifetime Achievement Award" for its role as pioneers in investigating the role of tau in Alzheimer's disease. The award ceremony was held yesterday (4: pm EST) within the framework of the "Alzheimer's Association International Conference (AAIC 2013)" in Boston (USA).

Eva-Maria and Eckhard Mandelkow have with their team achieved significant progress in Alzheimer's research in the course of their studies of a protein called "Tau". It is the basic substance of so-called neurofibrillary tangles (NFTs) - tiny protein deposits that accumulate in the brains of Alzheimer's patients. In the normal state, tau binds the cytoskeleton of neurons, in particular, it stabilizes the transport routes, along which their substances are transported within cells. Very early in Alzheimer's disease, the tau protein however changes, detaches itself from the cytoskeleton and agglomerates.

Since the 1990s, Eva-Maria and Eckhard Mandelkow have analyzed this protein. Longtime, the importance of the tau protein in Alzheimer’s disease has been underestimated. “At that time, no one would have thought that tau has such a significant role. However, we have pursued this approach because we have been interested in the role of Tau in nerve cells“ said Eva-Maria Mandelkow.

In pioneering studies, she and her husband have shown why the tau protein lumps in the brain and which sections of the molecular structure are thereby decisive. These findings allowed the couple to examine the consequences of the aggregation of the tau protein for the nerve cells in more detail. The result: Modifications of normal tau destroy the synapses of nerve cells. This is for example shown by studies on mice. If the protein accumulates in nerve cells, these mice perform worse in learning and memory tests than healthy animals and develop typical symptoms of Alzheimer's disease. In the event that the production of the toxic tau in the cells is stopped, the synapses regenerate and the mice recover from amnesia. This observation shows that the disease process is in principle reversible.

Eckhard Mandelkow: "I am of the opinion that an effective therapy against Alzheimer is possible. Crucial, in my view, is that the treatment is started early enough. Many of today's therapy approaches might have failed on account of the fact that they are applied too late. Since a disease is usually only diagnosed when typical symptoms such as memory dysfunctions are evident. At this time, the brain is however already severely damaged."

Recently, the couple has examined 200,000 substances, in order to find an active agent against the aggregation of tau. Some of these substances were found to be potential candidates for drugs. Their effect will now be further explored.

Prof. Dr. Eckhard Mandelkow studied physics and did his PhD at the Max Planck Institute for Medical Research in Heidelberg on the structure of virus proteins. In a subsequent research period at the Brandeis University (USA), he already dealt with proteins of the cytoskeleton and then continued this line of research. Then he focused on the structure and function of proteins of the nerve cells, especially of motor proteins, tau proteins and their pathological changes during the neurodegeneration. He is the head of the working group "Structural principles of neurodegeneration" at the DZNE/caesar in Bonn.

Dr. Eva-Maria Mandelkow studied medicine, worked for several years in the clinic and then pursued a career in fundamental research. She received her PhD at the Max Planck Institute for Medical Research in Heidelberg for her work in muscle physiology. This was followed by research periods at the Brandeis University (USA), the Scripps Research Institute (USA) and at the MRC Laboratory in Cambridge (UK), where she dealt with proteins of the cytoskeleton. Eva-Maria Mandelkow heads the working group "Cell and animal models of neurodegeneration" at the DZNE/caesar in Bonn.

Contact

Dr. Eva-Maria und Prof. Dr. Eckhard Mandelkow DZNE, Bonn and caesar research center
Tel.: +49 228/43302-688
E-Mail: Eva.Mandelkow@dzne.de / Eckhard.Mandelkow@dzne.de
Dr. Dirk Förger
Head of Press and Public Relations
DZNE, Bonn
Tel.: +49 228/43302-260
E-Mail: presse@dzne.de
Dr. Jürgen Reifarth
Head of Press and Public Relations
caesar research center
Tel.: +49 228/9656-107
E-Mail: juergen.reifarth@caesar.de

Sonja Jülich-Abbas | idw
Further information:
http://www.dzne.de

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>