Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneers in Alzheimer's Research: Research couple honored for its lifetime achievement

16.07.2013
Joint press release from the DZNE and the center of advanced european studies and research (caesar)

The U.S. Alzheimer's Association honors Dr. Eva-Maria Mandelkow and Prof. Dr. Eckhard Mandelkow from the German Center for Neurodegenerative Diseases (DZNE) and the caesar research center. The research couple receives the "2013 Khalid Iqbal Lifetime Achievement Award" for its role as pioneers in investigating the role of tau in Alzheimer's disease. The award ceremony was held yesterday (4: pm EST) within the framework of the "Alzheimer's Association International Conference (AAIC 2013)" in Boston (USA).

Eva-Maria and Eckhard Mandelkow have with their team achieved significant progress in Alzheimer's research in the course of their studies of a protein called "Tau". It is the basic substance of so-called neurofibrillary tangles (NFTs) - tiny protein deposits that accumulate in the brains of Alzheimer's patients. In the normal state, tau binds the cytoskeleton of neurons, in particular, it stabilizes the transport routes, along which their substances are transported within cells. Very early in Alzheimer's disease, the tau protein however changes, detaches itself from the cytoskeleton and agglomerates.

Since the 1990s, Eva-Maria and Eckhard Mandelkow have analyzed this protein. Longtime, the importance of the tau protein in Alzheimer’s disease has been underestimated. “At that time, no one would have thought that tau has such a significant role. However, we have pursued this approach because we have been interested in the role of Tau in nerve cells“ said Eva-Maria Mandelkow.

In pioneering studies, she and her husband have shown why the tau protein lumps in the brain and which sections of the molecular structure are thereby decisive. These findings allowed the couple to examine the consequences of the aggregation of the tau protein for the nerve cells in more detail. The result: Modifications of normal tau destroy the synapses of nerve cells. This is for example shown by studies on mice. If the protein accumulates in nerve cells, these mice perform worse in learning and memory tests than healthy animals and develop typical symptoms of Alzheimer's disease. In the event that the production of the toxic tau in the cells is stopped, the synapses regenerate and the mice recover from amnesia. This observation shows that the disease process is in principle reversible.

Eckhard Mandelkow: "I am of the opinion that an effective therapy against Alzheimer is possible. Crucial, in my view, is that the treatment is started early enough. Many of today's therapy approaches might have failed on account of the fact that they are applied too late. Since a disease is usually only diagnosed when typical symptoms such as memory dysfunctions are evident. At this time, the brain is however already severely damaged."

Recently, the couple has examined 200,000 substances, in order to find an active agent against the aggregation of tau. Some of these substances were found to be potential candidates for drugs. Their effect will now be further explored.

Prof. Dr. Eckhard Mandelkow studied physics and did his PhD at the Max Planck Institute for Medical Research in Heidelberg on the structure of virus proteins. In a subsequent research period at the Brandeis University (USA), he already dealt with proteins of the cytoskeleton and then continued this line of research. Then he focused on the structure and function of proteins of the nerve cells, especially of motor proteins, tau proteins and their pathological changes during the neurodegeneration. He is the head of the working group "Structural principles of neurodegeneration" at the DZNE/caesar in Bonn.

Dr. Eva-Maria Mandelkow studied medicine, worked for several years in the clinic and then pursued a career in fundamental research. She received her PhD at the Max Planck Institute for Medical Research in Heidelberg for her work in muscle physiology. This was followed by research periods at the Brandeis University (USA), the Scripps Research Institute (USA) and at the MRC Laboratory in Cambridge (UK), where she dealt with proteins of the cytoskeleton. Eva-Maria Mandelkow heads the working group "Cell and animal models of neurodegeneration" at the DZNE/caesar in Bonn.

Contact

Dr. Eva-Maria und Prof. Dr. Eckhard Mandelkow DZNE, Bonn and caesar research center
Tel.: +49 228/43302-688
E-Mail: Eva.Mandelkow@dzne.de / Eckhard.Mandelkow@dzne.de
Dr. Dirk Förger
Head of Press and Public Relations
DZNE, Bonn
Tel.: +49 228/43302-260
E-Mail: presse@dzne.de
Dr. Jürgen Reifarth
Head of Press and Public Relations
caesar research center
Tel.: +49 228/9656-107
E-Mail: juergen.reifarth@caesar.de

Sonja Jülich-Abbas | idw
Further information:
http://www.dzne.de

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>