Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ohio University alumnus receives Nobel Prize in Chemistry

08.10.2009
Ohio University alumnus Venkatraman "Venki" Ramakrishnan has received a 2009 Nobel Prize in Chemistry for his work on the function of ribosomes.

Ramakrishnan attended Ohio University's graduate physics program starting in 1971, earning his Ph.D. in 1976. After completing his doctorate Ramakrishnan shifted the direction of his research to emphasize biochemistry and molecular biology. He has since dedicated his work to the study of ribosome function at the atomic level, and their relation to DNA and how antibiotics bind to the ribosome.

"We're tremendously excited – it's a great honor," said Joseph Shields, chair and professor of Ohio University's Department of Physics and Astronomy. We think Dr. Ramakrishnan is certainly deserving, and we're very proud to have an alumnus receive a Nobel Prize."

Ramakrishnan shares the prize with Thomas A. Steitz of Yale University and Ada E. Yonath of the Weizmann Institute of Science in Israel.
Ribosomes are found in all living cells, including bacteria, and control the chemistry in living organisms. Studying the differences between human and bacterium ribosomes, the scientists have found that ribosomes work well with antibiotics by blocking the bacteria's ability to produce the proteins it needs to function.

According to a Nobel Foundation release,understanding the ribosome's innermost workings is important for a scientific understanding of life - many of today's antibiotics cure various diseases by blocking the function of bacterial ribosomes. Without functional ribosomes, bacteria cannot survive, making ribosomes an important target for new antibiotics, it states.

"This year's three Laureates have all generated 3D models that show how different antibiotics bind to the ribosome," the release states. "These models are now used by scientists in order to develop new antibiotics, directly assisting the saving of lives and decreasing humanity's suffering."

In 2006, Ramakrishnan was awarded Ohio University's Outstanding Alumni Award by the College of Arts and Sciences. He returned to campus in 2008 to present a special colloquium titled, "The Ribosome: The cell’s protein factory and how antibiotics sabotage it."

A mentor and good friend, Ron Cappelletti, professor emeritus of the physics department, said Ramakrishnan is most deserving of the award.

"I'm absolutely delighted that he won the Nobel Prize," Cappelletti said. "As a scholar, it was obvious from the beginning that he was brilliant."

Ramakrishnan currently cleads a research group at the Medical Research Council Laboratory of Molecular Biology in Cambridge, England and is a Fellow at Trinity College at the University of Cambridge. He is also a recipient of the Louis Jeantet Prize for Medicine and the Heatley Medal from the British Biochemical Society; and is a Fellow of the Royal Society and a member of the U.S. National Academy of Sciences.

Media contact:
Renea Morris, executive director, University Communications and Marketing, at 740-593-2200 or Jennifer Krisch, media specialist, at 740-597-1939 or krisch@ohio.edu

Renea Morris | Ohio University
Further information:
http://www.ohio.edu

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>